共查询到20条相似文献,搜索用时 81 毫秒
1.
2.
提出了一种融合超像素和CNN的CT图像器官主动轮廓分割方法。用超像素SLIC方法将CT图像网格化并分配标签;将网格化后图像作为数据集训练CNN网络分割出器官(如肝脏、肺部等)边界超像素,并将这些超像素的种子点连接成为粗分割边界;将粗分割边界作为初始轮廓,进行模糊主动轮廓分割得到CT图像中器官的边界。经过实验对比,该方法对肺部CT图像的分割平均DC系数达到97%、平均ASD系数达到1.23 mm。在肝脏CT图像方面与参考算法进行相比,在保证分割精度的前提下,VOE系数平均减少1%,切片图像的分割时间平均提高10 s。 相似文献
3.
4.
为了提高现有胰腺图像分割方法性能,提出一种超像素和U型全卷积网络(U-NET)结合的胰腺图像分割方法.首先,提出一种胰腺CT图像的超像素分割方法;然后,依据分割结果对图像进行映射降维得到腹部视觉概要图像,再将其与超像素位置信息作为U型全卷积网络的输入;最后,得到分割好的胰腺器官.在NIH胰腺公开数据集上的实验结果表明,文中方法将戴斯相似系数(DSC)提高到87.9%,高于目前已有的胰腺图像分割方法.并且其运算速度高于U-NET. 相似文献
5.
针对RGB-D图像具有丰富的三维几何特征,复杂度高这一具有挑战性的难题,提出一种针对室内场景RGB-D图像的分割算法.首先,经过RGB-D图像过分割生成超像素,并基于超像素之间的距离度量测量超像素之间的相似性;然后,采用DBSCAN算法将具有相似的颜色信息和几何信息的超像素聚类到一个分类中.在该聚类过程中,通过限制扩散区域来降低计算复杂度.在室内场景RGB-D图像库上大量实验结果表明,文中算法分割精确度和速率均超过了其他算法,证明了其高效性和准确性. 相似文献
6.
将聚类网络用于非监督的图像分割,提出了竞争层神经元的动态调整机制和返回式的非重复训练学习方案,实现了聚类数的自适应增加,解决了随机生成权值矩阵产生的死点问题,提高了算法的收敛性能。实验结果表明,改进的聚类网络的图像分割结果优于C-均值聚类算法和通常的聚类网络。 相似文献
7.
8.
基于密度峰值搜索聚类的超像素分割算法 总被引:1,自引:0,他引:1
本文提出了一种新的基于密度峰值搜索聚类的超像素分割算法.首先在图像平面内的局部区域内估计像素的局部密度.其次为每个像素寻找一个距离最近的大密度像素并计算两个属性:距离和归属.之后根据距离和归属将所有像素组织成一个归属关系树,该树反映了像素之间的归属关系.然后选择局部密度和距离较大的像素作为超像素的种子,并标记在归属关系树中.最后在归属关系树中搜索距离每个像素最近的超像素种子为其分配标记,实现超像素分割.该算法有两个优势:超像素分割过程无需迭代优化,计算速度非常快;可以精确控制超像素的数目和大小,使用灵活.与其它9种同类算法的对比实验表明:文中算法在边缘召回率、欠分割误差、可达分割精度、计算和存储复杂性方面表现出比较优越的性能. 相似文献
9.
显微细胞分割的精度直接影响疾病的判别诊断,特别在宫颈细胞的显微病理图像中,细胞核的形态大小、与细胞质之间的比例参数等对于病情的良恶诊断具有重大的意义。为提高宫颈细胞核质分割的精度,提出一种基于卷积神经网络的医学宫颈细胞图像的语义分割方法。标定宫颈细胞显微图像中的细胞核和细胞质轮廓,制作基于长沙市第二人民医院的基于新柏氏液基细胞学检测TCT(Thinprep cytologic test)制片技术的宫颈TCT细胞涂片的CCTCT数据集;通过卷积神经网络对核质分割模型进行训练,避免人工提取特征;通过反卷积达到图像的语义分割。实验结果表明,该算法在宫颈细胞的显微病理图像中的核质分割准确率高达94.7%,具有很高的鲁棒性和适应性。 相似文献
11.
提出了一种基于Kohonen聚类神经网络的图像分割算法。首先论述了Kohonen聚类神经网络的基本原理,在此基础上对其进行了改进,将其用于医学图像分割中。针对聚类中心初始值选取的盲目性,提出了初始值优选法,大幅度提高了分割算法的速度。实验表明,本文提出的算法能快速、准确地完成医学图像的自动分割。 相似文献
12.
基于卷积神经网络的正则化方法 总被引:2,自引:0,他引:2
正则化方法是逆问题求解中经常使用的方法.准确的正则化模型在逆问题求解中具有重要作用.对于不同类型的图像和图像的不同区域,正则化方法的能量约束形式应当不同,但传统的L1,L2正则化方法均基于单一先验假设,对所有图像使用同一能量约束形式.针对传统正则化模型中单一先验假设的缺陷,提出了基于卷积神经网络的正则化方法,并将其应用于图像复原问题.该方法的创新之处在于将图像复原看作一个分类问题,利用卷积神经网络对图像子块的特征进行提取和分类,然后针对不同特征区域采用不同的先验形式进行正则化约束,使正则化方法不再局限于单一的先验假设.实验表明基于卷积神经网络的正则化方法的图像复原结果优于传统的单一先验假设模型. 相似文献
13.
语义分割是计算机视觉中的基本任务,是对图像中的不同目标进行像素级的分割与分类.针对多尺度的目标分割难题,本文提出了一种基于Res Net网络的方法,通过定义并联支路,将浅层特征图像信息融合到深层特征图像中,提出新的空洞空间金字塔模块,该模块采用并行的不同采样率的空洞卷积进行特征提取与融合,从而更有效的提取不同层的特征以及上下文信息,并且在新模块中加入批规范化计算,增强参数调优的稳定性.本文还采用了Adam自适应优化函数,在训练的过程中,使得每个参数的更新都具有独立性,提升了模型训练的稳定性.本文结果在PASCAL VOC 2012语义分割测试集中取得了77.31%mIOU的成果,优于Deeplab V3的效果. 相似文献
14.
近年来基于卷积神经网络(CNN)的图像分割应用已十分广泛, 在特征提取的部分取得了很大进展. 然而随着卷积层数越来越深, 感受野不断增大, 使模型丢失局部特征信息进而影响模型性能. 使用图卷积网络(GCN)处理图数据结构的信息, 能够在保留局部特征同时不随层数的加深而丢失局部信息. 本文主要研究将基于CNN结构的对称全卷积网络(U-Net)特征提取与基于GCN的图像分割结合, 提取全局与局部、浅层与深层的多尺度特征集应用于多模态脑胶质瘤核核磁共振(MR)序列图像分割, 可分为两个阶段: 第1阶段利用 U-Net 对多模态脑核磁共振胶质瘤MR序列图像进行特征提取, 通过多个池化层实现多尺度特征提取及上采样进行特征融合, 其中底层输出较低级别特征, 高层输出更加抽象的高级特征; 第2阶段通过膨胀邻域及稀疏化处理将 U-Net 获得的特征图数据转化为 GCN 所需的图结构数据, 将图像分割问题转化为图节点分类问题, 最后通过余弦相似度量对图结构数据进行分类. 在BraTS 2018公开数据库上的实验结果取得分割准确度0.996、灵敏度0.892的效果. 相比其他深度学习模型, 本方法通过多尺度特征融合, 利用GCN建立高低级别特征的拓扑连接, 确保局部信息不丢失以取得较好的分割效果, 能够胜任临床脑胶质瘤核磁共振图像的分析需求, 进而有效提高脑胶质瘤诊断精度. 相似文献
15.
提出一种结合空间聚类和边缘梯度信息的图像自动分割算法.在判断超像素颜色及纹理相似性的同时,进一步给出更加精确的分段边缘梯度计算方法,并采用测地距离来刻画超像素之间的相似性,使得分割结果更好地融合边缘不连续性与区域相似性.大量图像分割实验结果表明,该方法能更准确地找出分割边界,提高图像分割的准确性. 相似文献
16.
本文提出一种通过竞争 Hopfield神经网络 (CHNN)对二维灰度向量聚类和进行图象分割的方法。该方法兼顾了图象的邻域相关信息及图象的边缘特性 ,因而分割准确、抗噪能力强。由于引入竞争学习机制 ,该方法收敛速度较快 相似文献
17.
针对海陆语义分割中陆地、码头形状多样,背景目标复杂等情况造成的像素分类错误、边界分割模糊等问题,提出了一种新的基于深度卷积神经网络的遥感图像海陆语义分割方法。该方法以端对端的训练方式实现了对目标的逐像素分类,为了解决海陆分割中像素分类错误,设计以不同尺度图像为输入的三个并行的编码结构,通过融合不同尺度的特征图,丰富特征代表算子的语义信息,增大像素分类准确率。为了解决海陆分割中边界分割模糊,通过设计能够融合编码结构中低层精细位置信息的解码结构,对特征图进行更加精确的上采样,恢复像素的密集位置信息,提高海陆分割准确度。为有效验证所提网络框架的优势,构建了海陆分割数据集HRSC2016-SL进行算法性能比较。与最新的语义分割算法相比,所提算法取得了更好的分割结果。 相似文献
18.
针对传统图像分类方法分类精度不高的问题,文章采用了两层卷积和池化的卷积神经网络(Convolutional Neural Network, CNN)算法来对图像进行分类。从不同方面将CNN与支持向量机(Support Vector Machines, SVM)、反向传播算法(Back Propagation, BP)进行图像分类的准确率对比,实验结果表明,CNN算法图像分类的准确率高于其它两种算法。 相似文献
19.
针对直径为3 mm的小尺寸橡胶柱塞件端面,其受光斑、灰尘及纹理干扰不易分割提取缺陷轮廓的问题,提出一种结合SLIC(简单线性迭代聚类)和RF(随机森林)算法的缺陷检测系统。首先利用霍夫变换和各向异性扩散滤波对图像预处理,然后采用基于超像素分割的SLIC算法分割和提取缺陷区域,最后把获得的缺陷区域的五维形状特征作为RF分类器特征向量进行缺陷分类预测。结果表明,SLIC算法较传统的自适应阈值分割算法快了0.128 s,并且分割效果远好于传统算法,能够准确分割出小至0.5 mm的缺陷,整体检测流程平均耗时小于1.5 s,同时RF分类结果准确率达到97.3%。因此,本文的缺陷检测系统满足在线检测准确性和实时性的要求,可在实际工作中使用。 相似文献
20.
针对作物叶部病斑区域图像边界模糊和不确定性等因素,以大豆病叶为对象,提出采用遗传神经网络对叶片病斑进行分割的方法,引入遗传算法优化神经网络的权值和阈值,提高了网络训练速度,避免了传统BP算法的局部最小值.通过对大豆灰斑病病斑图像分割的实验表明,该方法速度快且稳定性好,精度高且鲁棒性好. 相似文献