共查询到16条相似文献,搜索用时 78 毫秒
1.
Webshell作为黑客常用的网络攻击手段,其检测一直是网络安全领域非常热门的问题,根据Webshell的类型和检测方式的不同,本文对目前Webshell检测各类方法进行分析之后,将其分为三个主要类目:基于静态文本的检测、基于动态行为的检测以及基于日志分析的检测,并且讨论了各类方法的核心及优缺点,并对下一步Webshell检测技术研究方向进行了展望。 相似文献
2.
为解决加密型Webshell与非加密型Webshell的代码特征不统一、难以提取的问题,提出一种基于XGBoost算法的Webshell检测方法。首先,对Webshell进行功能分析,发现绝大部分Webshell都具有代码执行、文件操作、数据库操作和压缩与混淆编码等特点,这些特征全面地描述了Webshell的行为。因此,对于非加密型的Webshell,将其主要特征划分为相关函数出现的次数。对于加密型的Webshell,根据代码的静态特性,将文件重合指数、信息熵、最长字符串长度、压缩比4个参数作为其特征。最后,将两种特征统一起来作为Webshell特征,改善了Webshell特征覆盖不全的问题。实验结果表明,所提方法能有效地对两种Webshell进行检测;与传统的单一类型Webshell检测方法相比,该方法提高了Webshell检测的效率与准确率。 相似文献
3.
目前,我国电网企业对于识别停电投诉风险,开展用户停电敏感程度分析的研究工作还处在起步阶段.为了有效地分析停电用户的敏感程度,提出了一种基于改进随机森林算法的停电敏感用户分类算法.首先,对原始数据进行清洗、特征选择等预处理;接着,采用SMOTE算法增加少数敏感用户样本数据量,解决数据分布不均匀问题;然后,以Fisher比作为特征的重要性度量,按比例随机采样选取具有代表性的特征构成子特征空间;最后,利用随机森林算法识别停电敏感用户.通过在真实停电数据上的实验,验证了提出的方法不仅具有较好的准确性和时间性能,而且可以有效处理高维、冗余特征的数据. 相似文献
4.
随着低成本小型无人机的普及带来了一系列的严重问题并且难以监管。并且,由于环境物体的扰动、摄像机的抖动及采样噪声等因素导致现有方法在可见光图像下对无人机等小目标检测准确率低。针对上述问题,提出了一种基于随机森林的无人机检测方法。该方法采集可见光下的图像序列,使用混合高斯模型和聚类检测算法检测图像中的运动小目标,继而通过随机森林算法融合目标的多种特征进行目标的判别,最终得到检测目标。实验结果表明,该方法可有效地检测出无人机运动小目标并大幅提高检测的精确率。 相似文献
5.
Webshell是针对Web应用系统进行持久化控制的最常用恶意后门程序,对Web服务器安全运行造成巨大威胁。对于 Webshell 检测的方法大多通过对整个请求包数据进行训练,该方法对网页型 Webshell 识别效果较差,且模型训练效率较低。针对上述问题,提出了一种基于多特征融合的Webshell恶意流量检测方法,该方法以Webshell的数据包元信息、数据包载荷内容以及流量访问行为3个维度信息为特征,结合领域知识,从3个不同维度对数据流中的请求和响应包进行特征提取;并对提取特征进行信息融合,形成可以在不同攻击类型进行检测的判别模型。实验结果表明,与以往研究方法相比,所提方法在正常、恶意流量的二分类上精确率得到较大提升,可达99.25%;训练效率和检测效率也得到了显著提升,训练时间和检测时间分别下降95.73%和86.14%。 相似文献
6.
Webshell是一种基于Web服务的后门程序.攻击者通过Webshell获得Web服务的管理权限,从而达到对Web应用的渗透和控制.由于Webshell和普通Web页面特征几乎一致,所以可逃避传统防火墙和杀毒软件的检测.而且随着各种用于反检测特征混淆隐藏技术应用到Webshell上,使得传统基于特征码匹配的检测方式很难及时检测出新的变种.本文将讨论Webshell的特点和机理,分析其混淆隐藏技术,发掘其重要特征,提出并实现了一种基于决策树的检测模型.该模型是一种监督的机器学习系统,对先验网页样本进行学习,可有效检测出变异Webshell,弥补了传统基于特征匹配检测方法的不足,而结合集体学习方法Boosting,可以增强该模型的稳定性,提高分类准确率. 相似文献
7.
8.
工业物联网系统所面临的网络安全威胁随着物联网技术的广泛应用日益增加,信息安全问题已成为其发展过程中的一大挑战。MQTT(Message Queuing Telemetry Transport)协议是物联网通信的主流协议,基于该协议的物联网通信安全研究是当前研究的热点话题。传统的流量识别技术如深度包检测无法有效地识别符合包格式的异常流量,而基于机器学习理论的异常流量识别技术则表现出很好的效果。对此提出一种基于随机森林算法的MQTT异常流量检测方法,实现整体高于90%的MQTT异常流量识别准确度,与其他常用分类模型相比拥有更好的识别效果。 相似文献
9.
10.
WebShell根据其功能和大小可以分为多种类型,各种类型的WebShell在基本特征上又有其独有的特征,而现有的WebShell检测大多从单一层面提取特征,无法较全面的覆盖各种类型WebShell全部特征,具有种类偏向性,无差别的检测效果差,泛化能力弱等问题.针对这一问题,提出了一种基于随机森林的WebShell检测方法.该方法在数据预处理阶段分别提取文本层的统计特征和文本层源码与编译结果层字节码(opcode)的序列特征,构成较全面的组合特征,然后通过Fisher特征选择选取适当比例的重要特征,降低特征维度,构成样本的特征集,最后采用随机森林分类器训练样本得到检测模型.通过实验表明,本检测方法能有效地检测WebShell,并在准确率、召回率和误报率上都优于单一层面的WebShell检测模型. 相似文献
11.
随机森林(random forest,RF)算法虽应用广泛且分类准确度很高,但在面对特征维度高且不平衡的数据时,算法分类性能被严重削弱。高维数据通常包含大量的无关和冗余的特征,针对这个问题,结合权重排序和递归特征筛选的思想提出了一种改进的随机森林算法RW_RF(ReliefF&wrapper random forest)。首先引用ReliefF算法对数据集的所有特征按正负类分类能力赋予不同的权值,再递归地删除冗余的低权值特征,得到分类性能最佳的特征子集来构造随机森林;同时改进ReliefF的抽样方式,以减轻不平衡数据对分类模型的影响。实验结果显示,在特征数目很多的数据集中,改进算法的各评价指标均高于原算法,证明提出的RW_RF算法有效精简了特征子集,减轻了冗余特征对模型分类精度的影响,同时也证明了改进算法对处理不平衡数据起到了一定的效果。 相似文献
12.
为解决Android恶意软件检测问题,提出一种利用多特征基于改进随机森林算法的Android恶意软件静态检测模型.模型采用了基于行为的静态检测技术,选取Android应用的权限、四大组件、API调用以及程序的关键信息如动态代码、反射代码、本机代码、密码代码和应用程序数据库等属性特征,对特征属性进行优化选择,并生成对应的... 相似文献
13.
分布式拒绝服务(distributed denial-of-service,DDoS)是目前常见的网络攻击方式之一。在正常访问过程中访问都是理性的,流量较小且存在很大的不确定性;当发生DDoS攻击时,访问是非理性的,会产生大量的流量且存在一定规律。基于机器学习算法(SVM、HMM等)的DDoS攻击检测技术取得一些进展,但还存在着样本数量过多时易发生过拟合和未充分利用上下文信息等不足。基于随机森林的分类模型能够融合上下文信息,且在样本数量增多时不容易发生过拟合。本文提出一种基于随机森林的DDoS攻击检测方法,将数据流信息熵作为分类标准,对TCP洪水攻击、UDP洪水攻击、ICMP洪水攻击等三种常见的攻击方式进行特征分析,在此基础上使用基于随机森林分类模型分别对三类DDoS攻击方式进行分类检测,实验结果表明该方法能够较为准确地区分正常流量和攻击流量。 相似文献
14.
由于 Web 应用程序的复杂性和重要性, 导致其成为网络攻击的主要目标之一。攻击者在入侵一个网站后, 通常会植入一个 Webshell, 来持久化控制网站。但随着攻防双方的博弈, 各种检测技术、终端安全产品被广泛应用, 使得传统的以文件形式驻留的 Webshell 越来越容易被检测到, 内存型 Webshell 成为新的趋势。 内存型 Webshell 在磁盘上不存在恶意文件, 而是将恶意代码注入到内存中, 隐蔽性更强, 不易被安全设备发现, 且目前缺少针对内存型 Webshell 的检测技术。本文面向 Java 应用程序, 总结内存型 Webshell 的特征和原理, 构建内存型 Webshell 威胁模型, 定义了高对抗内存型 Webshell, 并提出一种基于RASP(Runtime application self-protection, 运行时应用程序自我保护)的动静态结合的高对抗内存型 Webshell 检测技术。针对用户请求, 基于 RASP 技术监测注册组件类函数和特权类函数, 获取上下文信息, 根据磁盘是否存在文件以及数据流分析技术进行动态特征检测, 在不影响应用程序正常运行的前提下, 实时地检测; 针对 JVM 中加载的类及对动态检测方法的补充, 研究基于文本特征的深度学习静态检测算法, 提升高对抗内存型 Webshell 的检测效率。实验表明, 与其他检测工具相比, 本文方法检测内存型 Webshell 效果最佳, 准确率为 96.45%, 性能消耗为 7.74%, 具有可行性, 并且根据检测结果可以准确定位到内存型Webshell 的位置。 相似文献
15.
16.
为了提高网络安全水平,及时对网络攻击进行主动检测,提出了一种基于随机森林的网络入侵检测模型。该模型能够对大流量攻击进行分布式检测,且检测算法在引入了两个随机性后,即可降低网络流量内不同属性特征字段的噪声,并消除关联性,以便更为便捷、迅速地对攻击进行主动检测。将经典的Adaboost组合多分类器方法与提出的算法在检测率、正确率、精确率三个方面进行对比,体现了该算法的优越性,为大数据时代下网络安全提供了更好的保护。 相似文献