首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
脊柱磁共振(magnetic resonance,MR)图像精确分割是脊柱配准、三维重建等技术的前提。传统脊柱MR图像分割方法过程繁琐,精度低。为克服传统方法弊端,提出了一种基于深度学习的脊柱MR图像自动分割方法。该方法构建对称通道卷积神经网络提取多尺度图像特征,通过残差连接解决训练中网络退化问题,同时用跳跃连接层连接中间层特征减少信息丢失。在搭建的网络模型中加入卷积块注意力机制关注空间和通道中的有效特征。实验结果表明,该模型在测试集上的平均DSC系数为0.861?9,相比FCN、U-Net、DeeplabV3+和UNet++网络模型分别提高了15.34%、7.08%、5.79%、3.1%。该模型可应用于临床实践中提升脊柱MR图像的分割精度。  相似文献   

2.
针对传统方法进行图像分割易受噪声影响问题,提出了一种基于全卷积神经网络的林木图像分割方法。该方法不需要对图像进行预处理,利用上池化和反卷积层恢复图像分辨率,采用跳跃连接降低网络复杂度,同时避免了梯度消失问题,使用Dropout正则化随机激活网络隐藏单元以防止过拟合,后端结合全连接的条件随机场以恢复对象边缘的细节信息,进一步优化分割结果。该模型能够在林木图像上实现良好的分割。  相似文献   

3.
近年来,计算机视觉领域随着深度学习的发展取得了长足进步,而该领域中卷积神经网络发挥了重要作用。计算机视觉领域的发展与物品识别检测、视频监控分析等息息相关,在日常生活和生产中具有重要作用。作为其最基本的算法之一,图像语义分割更是关键所在,只有保证图像语义分割,才能使后续算法正常执行分类或者识别命令。基于此,探讨了卷积神经网络在计算机视觉领域尤其是图像分割方面的应用,以提升图像分割算法的效率及效果。  相似文献   

4.
朱锴  付忠良  陈晓清 《计算机应用》2019,39(7):2121-2124
超声图像左心室的分割在临床上对医生的作用巨大。由于超声图像含有大量噪声,轮廓特征不明显,目前的卷积神经网络(CNN)方法对左心室分割容易得到不必要的区域,并且分割目标不完整。为了解决上述问题,在全卷积神经网络(FCN)基础上加入了关键点定位和求取图像凸包方法对分割结果进行优化。首先采用FCN获取初步的分割结果;然后为了去除分割结果中的错误区域,提出一种CNN定位左心室三个关键点的位置,通过关键点筛选掉分割结果中不必要的区域;最后为保证剩余区域能够组合成一个完整的心室,利用求取图像凸包算法将所有有效区域进行合并。实验结果表明,在超声图像左心室分割效果上,所提方法能够在普通FCN的基础上获得很大的提升,在交并比评价标准下,该方法获取的左心室结果能够比传统CNN方法提升近15%。  相似文献   

5.
为了提高基于图像的三维重建的重建效果,基于深度学习的方法已经成为近年来研究的重点。针对目前存在的方法中特征提取效果差、重建细节缺失且计算量巨大的问题,提出一种改进卷积神经网络的单个物体重建方法。通过加入改进的Inception-resnet模块来提升网络的特征提取能力,采用多种网络结构提取多特征,通过多特征依次输入3D-LSTM模块中以增强单幅图像的重建效果。实验结果表明,该方法不仅能够得到更好的重建效果,重建出更多的细节,同时在训练中花费更少的时间。  相似文献   

6.
为提高虫情图像的分割和计数的准确率,提出了一种基于卷积神经网络的虫情图像分割和计数方法。该方法基于U-Net模型构造了一种昆虫图像分割的模型Insect-Net,将完整的虫情图像和切割后的虫情图像分别输入模型后,提取两者特征进行融合。将融合后的特征输入1个1×1的卷积层得到最终分割结果,再将得到的结果二值化后,采用轮廓检测算法将昆虫目标与背景分离并计数。实验结果表明,该方法在虫情图像中取得了较高的分割正确率和计数正确率,分别为94.4%和89.2%。用深度学习和卷积神经网络的方法有效提高了虫情图像的计数精度,并且为昆虫识别分类提供了大量的无背景数据集。  相似文献   

7.
图像语义分割是计算机视觉领域的热点研究课题,随着全卷积神经网络的迅速兴起,图像语义分割和全卷积神经网络的融合发展取得了非常卓越的成绩.通过对近年来高质量文献的收集,重点对全卷积神经网络图像语义分割方法进行总结.将收集的文献,按照应用场景的不同,划分为经典语义分割、实时性语义分割和RGBD语义分割,对具有代表性的分割方法...  相似文献   

8.
空间植物培养实验作为空间科学的一项重要研究,通常会获得大量的植物序列图像,传统的处理方法多采用人工观察,以供后续的进一步分析。本文提出一种基于多尺度深度特征融合的空间植物分割算法。该方法应用全卷积深度神经网络来提取多尺度特征,并分层次地融合由深层到浅层的特征,以达到对植物进行像素级的识别。分层次的特征融合了语义信息、中间层信息和几何特征,提高了分割的准确性。实验表明该方法在分割准确性方面表现良好,能够自动提取空间植物实验中的有效信息。  相似文献   

9.
一种改进FCN 的肝脏肿瘤CT 图像分割方法   总被引:1,自引:0,他引:1       下载免费PDF全文
精准的医学图像分割是辅助疾病诊断和手术规划的必要步骤。由于腹部器官边界 模糊、对比度不高,肝脏肿瘤的自动分割一直是一个难题。针对传统全卷积神经网络(FCN)实 现端到端分割精度不佳等问题,提出了一种卷积型多尺度融合FCN 的CT 图像肝脏肿瘤分割方 法。首先,通过提高对比度、增强和去噪的方式对原始的CT 图像数据集进行预处理;然后使 用处理后的数据集对所设计好的FCN 网络进行训练;最终得出能够精确分割肝脏肿瘤的网络模 型。实验效果采用多种评价指标进行分割结果的评估,并且与多种常见的分割网络进行对比。 实验结果表明本文方法可以精准分割CT 图像中各种形状和大小的肝脏肿瘤,分割效果良好, 能够为临床的诊断提供可靠的依据。  相似文献   

10.
11.
12.
目的 胰腺的准确分割是胰腺癌识别和分析的重要前提。现有基于深度学习的主流胰腺分割网络大多是编码—解码结构,对特征图采用先降低再增加分辨率的方式,严重丢失了胰腺位置和细节信息,导致分割效果不佳。针对上述问题,提出了基于3D路径聚合高分辨率网络的胰腺分割方法。方法 首先,为了捕获更多3D特征上下文信息,将高分辨率网络中的2D运算拓展为3D运算;其次,提出全分辨特征路径聚合模块,利用连续非线性变换缩小全分辨率输入图像与分割头网络输出特征语义差异的同时,减少茎网络下采样丢失的位置和细节信息对分割结果的影响;最后,提出多尺度特征路径聚合模块,利用渐进自适应特征压缩融合方式,避免低分辨率特征通道过度压缩导致的信息内容损失。结果 在公开胰腺数据集上,提出方法在Dice系数(Dice similarity coefficient,DSC)、Jaccard系数(Jaccard index,JI)、精确率(precision)和召回率(recall)上相比3D高分辨率网络(3D high-resolution net,3DHRNet)分别提升了1.41%、2.09%、2.35%和0.49%,相比具有代表性编码—解码结构的胰腺分割方法,取得了更高的分割精度。结论 本文提出的3D路径聚合高分辨率网络(3D pathaggregation high-resolution network,3DPAHRNet)具有更强的特征位置和细节信息的保留能力,能够显著改善在腹部CT(computed tomography)图像中所占比例较小的胰腺器官的分割结果。开源代码可在https://github.com/qiuchengjian/PAHRNet3D获得。  相似文献   

13.
目的 海马体积很小,对比度极低,传统标记融合方法选用手工设计的特征模型,难以提取出适应性好、判别性强的特征。近年来,深度学习方法取得了极大成功,基于深度网络的方法已应用于医学图像分割中,但海马结构复杂,子区较多且体积差别较大,特别是CA2和CA3子区体积极小,常见的深度网络无法准确分割海马子区。为了解决这些问题,提出一种结合多尺度输入和串行处理神经网络的海马子区分割方法。方法 针对海马中体积差距较大的子区,设计两种不同的网络,结合多种尺度图像块信息,为小子区建立类别数量均衡的训练集,避免网络被极端化训练,最后,采用串行标记的方式对海马子区进行分割。结果 在Tail,SUB和PHG子区上的准确率达到了0.865,0.81,0.773,较现有的多图谱子区分割方法有较大提高,并且将体积较小子区CA2,CA3上的准确率分别提高了6%和9%。结论 该算法将基于卷积神经网络的分类方法引入到标记融合阶段,根据海马子区特殊的灰度及结构特点,设计两种针对性网络,实验证明,该算法能提取出适应性好、判别性强的特征,提高了分割准确率。  相似文献   

14.
基于卷积神经网络的遥感图像分类研究   总被引:1,自引:0,他引:1       下载免费PDF全文
遥感图像分类是模式识别技术在遥感领域的具体应用,针对遥感图像处理中的分类问题,提出了一种基于卷积神经网络(convolutional neural networks,CNN)的遥感图像分类方法,并针对单源特征无法提供有效信息的问题,设计了一种多源多特征融合的方法,将遥感图像的光谱特征、纹理特征、空间结构特征等按空间维度以向量或矩阵的形式进行有效融合,以此训练CNN模型。实验表明,多源多特征相融合能够加快模型收敛速度,有效提高遥感图像的分类精度;与其他分类方法相比,CNN能够取得更高的分类精度,获得更优的分类效果。  相似文献   

15.
目的 近年来,卷积神经网络在解决图像超分辨率的问题上取得了巨大成功,不同结构的网络模型相继被提出。通过学习,这些网络模型对输入图像的特征进行抽象、组合,进而建立了从低分辨率的输入图像到高分辨率的目标图像的有效非线性映射。在该过程中,无论是图像的低阶像素级特征,还是高阶各层抽象特征,都对像素间相关性的挖掘起了重要作用,影响着目标高分辨图像的性能。而目前典型的超分辨率网络模型,如SRCNN(super-resolution convolutional neural network)、VDSR(very deep convolutional networks for super-resolution)、LapSRN(Laplacian pyramid super-resolution networks)等,都未充分利用这些多层次的特征。方法 提出一种充分融合网络多阶特征的图像超分辨率算法:该模型基于递归神经网络,由相同的单元串联构成,单元间参数共享;在每个单元内部,从低阶到高阶的逐级特征被级联、融合,以获得更丰富的信息来强化网络的学习能力;在训练中,采用基于残差的策略,单元内使用局部残差学习,整体网络使用全局残差学习,以加快训练速度。结果 所提出的网络模型在通用4个测试集上,针对分辨率放大2倍、3倍、4倍的情况,与深层超分辨率网络VDSR相比,平均分别能够获得0.24 dB、0.23 dB、0.19 dB的增益。结论 实验结果表明,所提出的递归式多阶特征融合图像超分辨率算法,有效提升了性能,特别是在细节非常丰富的Urban100数据集上,该算法对细节的处理效果尤为明显,图像的客观质量与主观质量都得到显著改善。  相似文献   

16.
U-Net在图像分割领域取得了巨大成功,然而卷积和下采样操作导致部分位置信息丢失,全局和长距离的语义交互信息难以被学习,并且缺乏整合全局和局部信息的能力。为了提取丰富的局部细节和全局上下文信息,提出了一个基于卷积胶囊编码器和局部共现的医学图像分割网络MLFCNet (network based on convolution capsule encoder and multi-scale local feature co-occurrence)。在U-Net基础上引入胶囊网络模块,学习目标位置信息、局部与全局的关系。同时利用提出的注意力机制保留网络池化层丢弃的信息,并且设计了新的多尺度特征融合方法,从而捕捉全局信息并抑制背景噪声。此外,提出了一种新的多尺度局部特征共现算法,局部特征之间的关系能够被更好地学习。在两个公共数据集上与九种方法进行了比较,相比于性能第二的模型,该方法的mIoU在肝脏医学图像中提升了4.7%,Dice系数提升了1.7%。在肝脏医学图像和人像数据集上的实验结果表明,在相同的实验条件下,提出的网络优于U-Net和其他主流的图像分割网络。  相似文献   

17.
宋阳  刘哲 《计算机应用研究》2021,38(8):2490-2494
由于腹部图像中肝脏区域的复杂性和传统分割方法特征提取上的局限性等原因,肝脏分割领域仍存在着很多挑战.针对现有分割网络在肝脏区域的全局信息和局部信息处理上存在的不足,设计了一种融合更多局部特征的循环密集连接网络的分割方法.该方法将循环密集连接模块和局部特征补充模块整合为编码过程的学习单元,使编码单元融合深层次全局信息和更多尺度的局部特征信息.最后,在解码过程后,利用softmax函数输出分割结果.在LiTS数据集上该方法在多个评价指标中表现优异,精确度达到了95.1%.此外,在Data_67数据集上的相关实验也证明了该方法具有很好的泛化性能.实验表明,密集连接融合更多的局部信息,能够使肝脏分割模型的性能更加优异.  相似文献   

18.
深度卷积神经网络在医学图像分割领域运用广泛,目前的网络改进普遍是引入多尺度融合结构,增加了模型的复杂度,在提升精度的同时降低了训练效率。针对上述问题,提出一种新型的WU-Net肺结节图像分割方法。该方法对U-Net网络进行改进,在原下采样编码通路引入改进的残余连接模块,同时利用新提出的dep模块改进的信息通路完成特征提取和特征融合。实验利用LUNA16的数据集对WU-Net和其他模型进行训练和验证,在以结节为尺度的实验中,Dice系数和交并比分别能达到96.72%、91.78%;在引入10%的负样本后,F;值达到了92.41%,相比UNet3+提高了1.23%;在以肺实质为尺度的实验中,Dice系数和交并比分别达到了83.33%、66.79%,相比RU-Net分别提升了1.35%、2.53%。相比其他模型,WU-Net模型的分割速度最快,比U-Net提升了39.6%。结果显示,WU-Net提升肺结节分割效果的同时加快了模型的训练速度。  相似文献   

19.
针对腹部CT影像邻近器官对比度较低及因个体肝脏形状差异较大等引起肝脏分割困难的问题,提出了全卷积神经网络肝脏分割模型。首先通过卷积神经网络提取图像深层、抽象的特征,再通过反卷积运算对提取到的特征映射进行插值重构后得到分割结果。由于单纯进行反卷积得到的分割结果往往比较粗糙,因此,在反卷积之前,先融合高层与低层的特征,并且通过增加反卷积的层数、减少反卷积步长,得到了更为精确的分割结果。与传统卷积神经网络的分割方法相比,该模型可以充分利用CT影像的空间信息。实验数据表明该模型能够使腹部CT影像肝脏分割具有较高的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号