共查询到17条相似文献,搜索用时 109 毫秒
1.
稀疏矩阵与向量相乘SpMV是求解稀疏线性系统中的一个重要问题,但是由于非零元素的稀疏性,计算密度较低,造成计算效率不高。针对稀疏矩阵存在的一些不规则性,利用混合存储格式来进行SpMV计算,能够提高对稀疏矩阵的压缩效率,并扩大其适应范围。HYB是一种广泛使用的混合压缩格式,其性能较为稳定。而随着GPU并行计算得到普遍应用以及CPU日趋多核化,因此利用GPU和多核CPU构建异构并行计算系统得到了普遍的认可。针对稀疏矩阵的HYB存储格式中的ELL和COO存储特征,把两部分数据分别分割到CPU和GPU进行协同并行计算,既能充分利用CPU和GPU的计算资源,又能够发挥CPU和GPU的计算特性,从而提高了计算资源的利用效能。在分析CPU+GPU异构计算模式的特征的基础上,对混合格式的数据分割和共享方面进行优化,能够较好地发挥在异构计算环境的优势,提高计算性能。 相似文献
2.
Word Mover's Distance(WMD)是一种度量文本相似度的方法,它将两个文本之间的差异定义为文本的词嵌入向量之间的最小距离.WMD利用词汇表,将文本表示为归一化的词袋向量.文本的单词在语料中所占的比例很小,因此用词袋模型生成的文本向量很稀疏.多个文本可以组成一个高维的稀疏矩阵,这样的稀疏矩阵会生成大量不必要的运算.通过一次性对多个目标文本计算单个源文本的WMD,可以使计算过程高度并行化.针对文本向量的稀疏性,文中提出了一种基于GPU的并行Sinkhorn-WMD算法,采取压缩格式存储目标文本的方式来提高内存利用率,根据稀疏结构减少中间过程的计算.利用预训练词嵌入向量计算单词距离矩阵,对WMD算法进行改进,在两个公开的新闻数据集上进行优化算法的验证.实验结果表明,在NVIDIA TITAN RTX上并行算法与CPU串行相比最高可以达到67.43倍的加速. 相似文献
3.
《计算机学报》2014,(7)
稀疏矩阵Cholesky分解是求解大规模稀疏线性方程组的核心算法,也是求解过程中最耗时的部分.近年来,一系列并行算法通过图形处理器(GPU)获得了显著的加速比,然而,由于访存的不规则性以及任务间的大量数据依赖关系,稀疏矩阵Cholesky分解算法在GPU上的计算效率很低.文中实现了一种新的基于GPU的稀疏矩阵Cholesky分解算法.在数据组织方面,改进了稀疏矩阵超节点数据结构,通过超节点合并和分块控制计算粒度;在计算调度方面,将稀疏矩阵Cholesky分解过程映射为一系列的数据块任务,并设计了相应的任务生成与调度算法,在满足数据依赖性的前提下提高任务的并行性.实验结果表明,该算法能够显著提高稀疏矩阵Cholesky分解算法在GPU上的实现效率,在单个GPU上获得了相对4核CPU平台2.69~3.88倍的加速比. 相似文献
4.
kNN算法是机器学习和数据挖掘程序中经常使用的经典算法。随着数据量的增大,kNN算法的执行时间急剧上升。为了有效利用现代计算机的GPU等计算单元减少kNN算法的计算时间,提出了一种基于OpenCL的并行kNN算法,该算法对距离计算和排序两个瓶颈点进行并行化,在距离计算阶段使用细粒度并行化策略和优化的线程模型,排序阶段使用优化内存模型的双调排序。以UCI数据集letter为测试集,分别使用E8400和GTS450运行kNN算法进行测试,采用GPU加速的并行kNN算法的计算速度比CPU版提高了40.79倍。 相似文献
5.
波束形成的实时性一直是声纳和雷达等领域信号处理过程中的重点和难点。本文采用基于CUDA(Compute Unified Device Architecture,统一计算设备架构)的GPU(Graphic Processing Unit,图形处理器)与CPU协作处理方法,实现了宽带波束形成的实时处理。本方法的处理速度相较于matlab和CPU平台可以提高一至两个数量级,相较于同等处理速度的多DSP平台则体现了开发周期短、费用低、工作量小和可靠性高等众多优势。 相似文献
6.
连续的数据无关是指计算目标矩阵连续的元素时使用的源矩阵元素之间没有关系且也为连续的,访存密集型是指函数的计算量较小,但是有大量的数据传输操作。在OpenCL框架下,以bitwise函数为例,研究和实现了连续数据无关访存密集型函数在GPU平台上的并行与优化。在考察向量化、线程组织方式和指令选择优化等多个优化角度在不同的GPU硬件平台上对性能的影响之后,实现了这个函数的跨平合性能移植。实验结果表明,在不考虑数据传输的前提下,优化后的函数与这个函数在OpenCV库中的CPU版本相比,在AMD HD 5850 GPU达到了平均40倍的性能加速比;在AMD HD 7970 GPU达到了平均90倍的性能加速比;在NVIDIA Tesla 02050 CPU上达到了平均60倍的性能加速比;同时,与这个函数在OpenCV库中的CUDA实现相比,在NVIDIA Tesla 02050平台上也达到了1.5倍的性能加速。 相似文献
7.
8.
杨柳 《计算机光盘软件与应用》2012,(22):143+138
CPU与GPU各有所长。CPU的资源多用于缓存,而GPU的资源多用于数据计算。将CPU技术就进行比较,希望创造具有高性能处理器与独立显卡的处理性能,从而提高了电脑的运行效率,提高更好的性价比,使其为我们带来更好的选择。 相似文献
9.
10.
归约算法在科学计算和图像处理等领域有着十分广泛的应用,是并行计算的基本算法之一,因此对归约算法进行加速具有重要意义。为了充分挖掘异构计算平台下GPU的计算能力以对归约算法进行加速,文中提出基于线程内归约、work-group内归约和work-group间归约3个层面的归约优化方法,并打破以往相关工作将优化重心集中在work-group内归约上的传统思维,通过论证指出线程内归约才是归约算法的瓶颈所在。实验结果表明,在不同的数据规模下,所提归约算法与经过精心优化的OpenCV库的CPU版本相比,在AMD W8000和NVIDIA Tesla K20M平台上分别达到了3.91~15.93和2.97~20.24的加速比; 相比于OpenCV库的CUDA版本与OpenCL版本,在NVIDIA Tesla K20M平台上分别达到了2.25~5.97和1.25~1.75的加速比;相比于OpenCL版本,在AMD W8000平台上达到了1.24~5.15的加速比。文中工作不仅实现了归约算法在GPU计算平台上的高性能,而且实现了在不同GPU计算平台间的性能可移植。 相似文献
11.
In wireless communication, Viterbi decoding algorithm (VDA) is the one of most popular channel decoding algorithms, which is widely used in WLAN, WiMAX, or 3G communications. However, the throughput of Viterbi decoder is constrained by the convolutional characteristic. Recently, the three‐point VDA (TVDA) was proposed to solve this problem. In TVDA, the whole procedure can be divided into three phases, the forward, trace‐back, and decoding phases. In this paper, we analyze the parallelism of TVDA and propose parallel TVDA on the multi‐core CPU, graphics processing unit (GPU), and field programmable gate array (FPGA). We demonstrate approaches that fully exploit its performance potential on CPU, GPU, and FPGA computing platforms. For CPU platforms, we perform two optimization methods, single instruction multiple data and multithreading to gain over 145 × speedup over the naive CPU version on a quad‐core CPU platform. For GPU platforms, we propose the combination of cached memory optimization, coalesced global memory accesses, codeword packing scheme, and asynchronous data transition, achieving the throughput of 404.65 Mbps and 12 × speedup over initial GPU versions on an NVIDIA GeForce GTX580 card and 7 × speedup over Intel quad‐core CPU i5‐2300, under the same manufacturing year and both with fully optimized schemes. In addition, for FPGA platforms, we customize a radix‐4 pipelined architecture for the TVDA in a 45‐nm FPGA chip from Xilinx (XC6VLX760). Under 209.15‐MHz clock rate, it achieves a throughput of 418.30 Mbps. Finally, we also discuss the performance evaluation and efficiency comparison of different flexible architectures for real‐time Viterbi decoding in terms of the decoding throughput, power consumption, optimization schemes, programming costs, and price costs.Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
雷达探测范围作为电磁场的一个典型代表,由于其在军事决策时扮演着重要的作用,所以对探测范围可视化的准确性和实时性的要求很严格。传统的面绘制三维数据场信息会造成大量的空间信息丢失。因此,采用体绘制技术来获取电磁场中的三维数据场信息。针对传统体绘制技术算法执行效率较低的问题,提出使用多核CPU+GPU的架构来加速体绘制,从而实现实时处理。实验表明,采用提出的方法可以大幅减少体绘制中光线绘制的时间,充分利用CPU的空闲存储资源和计算资源。 相似文献
13.
为了充分利用图形处理器(GPU)的闲置资源,同时达到提高密码算法加密速度的目的,提出了一种在图形处理器上实现AES加密算法的方法,分别阐述了基于传统OpenGL的AES实现以及基于最新技术CUDA的AES实现,并对这两种方法的实现性能进行了分析,同时与传统CPU方法的实现性能进行了比较,基于CUDA的AES的实现速度达到了传统CPU上AES实现速度的19.6倍. 相似文献
14.
针对人脸轮廓提取中Chan-Vese模型计算量大、分割速度缓慢等问题,采用开放计算语言(OpenCL)并行编程模型,提出了一种基于图形处理器(GPU)和多核CPU加速的并行算法。该算法首先将模型的框架进行重构,消除模型中的数据依赖关系;然后,利用开放计算语言对算法进行并行化以及相应的优化。实验结果表明,与单线程算法相比,在NVIDIA GTX660和AMD FX-8530下达到了较高的加速比。 相似文献
15.
为有效提高异构的CPU/GPU集群计算性能,提出一种支持异构集群的CPU与GPU协同计算的两级动态调度算法。根据各节点计算能力评测结果和任务请求动态分发数据,在节点内CPU和GPU之间动态调度任务,使用数据缓存和数据处理双队列机制,提高异构集群的传输和处理效率。该算法实现了集群各节点"能者多劳",避免了单节点性能瓶颈造成的任务长尾现象。实验结果表明,该算法较传统MPI/GPU并行计算性能提高了11倍。 相似文献
16.
针对无损压缩编码中梯度调节预测器(GAP)模板的方向固定、单一的问题,根据实际边缘具有线状变化增量相同的特征,提出多方向线状梯度调节预测器(MLGAP)模板。首先从图像中心向四周划分四个子图像,应用图形处理器(GPU)并行技术,在每个子图像中采用MLGAP模板计算预测值;然后利用错误反馈信息构建预测误差图像;再通过大津(OTSU)算法计算阈值;分类误差图像边缘;最后用Hilditch算法细化边缘。实验结果表明,图像边缘检测定位精确,噪声少,细节丰富,而且GPU并行技术加速了图像处理。 相似文献
17.
设计和实现了GPU上基于流的光线跟踪算法,采用一种基于线索二叉树的KD-Tree结构组织场景,避免了传统KD-Tree结构在遍历场景时在堆栈上的开销。算法在组织复杂场景上,优于利用传统KD-Tree和均匀剖分结构加速场景遍历的方法,在普通PC上实现了光线跟踪的快速渲染。 相似文献