共查询到18条相似文献,搜索用时 46 毫秒
1.
极限学习机(ELM)作为一种无监督分类方法,具有学习速度快、泛化性能高、逼近能力好的优点。随着无监督学习的发展,将ELM与自动编码器集成已成为无标签数据集提取特征的新视角,如极限学习机自动编码器(ELM-AE)是一种无监督的神经网络,无需迭代即可找到代表原始样本和其学习过程的主要成分。其重建输入信号获取原始样本的主要特征,且考虑了原始数据的全局信息以避免信息的丢失,然而这类方法未考虑数据的固有流形结构即样本间的近邻结构关系。借鉴极限学习机自动编码器的思想,提出了一种基于流形的极限学习机自动编码器算法(M-ELM)。该算法是一种非线性无监督特征提取方法,结合流形学习保持数据的局部信息,且在特征提取过程中同时对相似度矩阵进行学习。通过在IRIS数据集、脑电数据集和基因表达数据集上进行实验,将该算法与其他无监督学习方法PCA、LPP、NPE、LE和ELM-AE算法经过[k]-means聚类后的准确率进行了比较,以表明该算法的有效性。 相似文献
2.
极限学习机ELM(Extreme learning machine)以其简单快速和良好的泛化能力在模式识别和机器学习领域得到了广泛的应用。近年来,研究人员将其应用到高光谱遥感图像分类问题中。然而,由于数据样本有限,极限学习机及其相关技术在遥感图像中存在数据学习不充分的问题。流形学习算法揭示了数据内在的几何结构信息。根据遥感图像的特点,基于流形学习的思想,将遥感图像数据样本的流行结构引入到ELM模型中,提出一种基于局部信息保持极限学习机LPKELM(locality information preserving extreme learning machine)。为了验证所提算法的有效性,使用两个高光谱遥感图像数据集进行实验。实验结果表明,LPKELM的分类性能优于SVM、KELM、KCRT-CK和MLR算法。 相似文献
3.
针对人脸图片数量多、容易受噪声干扰,致使人脸识别的识别速度慢、准确率低的问题,提出一种基于局部线性嵌入极限学习机的人脸识别方法——LLE-ELM算法。利用局部线性嵌入(LLE)算法对人脸数据提取特征,最大限度保留原数据的特征结构,减少数据量,降低计算复杂;采用极限学习机(ELM)算法对提取特征后的数据进行分类;实现人脸识别,输出识别准确率和时长。通过在ORL数据库、Yale数据库、AR人脸库和CASIA-WEBFACE人脸库上的数值实验表明:与PCA、SVM、CNN算法对比,该算法具有较高的识别准确率和较快的识别速度。 相似文献
4.
针对模拟电路故障诊断中特征提取以及模型训练时间较长的难题,采用了一种基于深度极限学习机的模拟电路故障诊断算法。该算法将深度学习中自编码器的思想引入到极限学习机中,构建深度网络,将底层的故障特征转换更加抽象的高级特征,能自主地学习数据特征,避免了繁琐的特征提取和选择。最终通过Sallen-Key和四运放双二次高通滤波2个模拟电路进行仿真研究,实验结果验证了算法在模拟电路故障诊断上的可行性,也表明模型学习速度快、泛化能力好,具有较强的诊断能力,故障诊断分类准确率可以达到100%,诊断时间在0.3 s左右。 相似文献
5.
尽管极限学习机因具有快速、简单、易实现及普适的逼近能力等特点被广泛应用于分类、回归及特征学习问题,但是,极限学习机同其他标准分类方法一样将最大化各类总分类性能作为算法的优化目标,因此,在实际应用中遇到数据样本分布不平衡时,算法对大类样本具有性能偏向性。针对极限学习机类不平衡学习问题的研究起步晚,算法少的问题,在介绍了极限学习机类不平衡数据学习研究现状,极限学习机类不平衡数据学习的典型算法-加权极限学习机及其改进算法的基础上,提出一种不需要对原始不平衡样本进行处理的Adaboost提升的加权极限学习机,通过在15个UCI不平衡数据集进行分析实验,实验结果表明提出的算法具有更好的分类性能。 相似文献
6.
一种基于鲁棒估计的极限学习机方法 总被引:2,自引:0,他引:2
极限学习机(ELM)是一种单隐层前馈神经网络(single-hidden layer feedforward neural networks,SLFNs),它相较于传统神经网络算法来说结构简单,具有较快的学习速度和良好的泛化性能等优点。ELM的输出权值是由最小二乘法(least square,LE)计算得出,然而经典的LS估计的抗差能力较差,容易夸大离群点和噪声的影响,从而造成训练出的参数模型不准确甚至得到完全错误的结果。为了解决此问题,提出一种基于M估计的采用加权最小二乘方法来取代最小二乘法计算输出权值的鲁棒极限学习机算法(RBELM),通过对多个数据集进行回归和分类分析实验,结果表明,该方法能够有效降低异常值的影响,具有良好的抗差能力。 相似文献
7.
《计算机应用与软件》2016,(9)
极限学习机ELM(Extreme Learning Machine)具有训练过程极为快速的优点,但在实际分类应用中ELM分类器的分类精度和稳定性有时并不能满足要求。针对这一问题,在ELM用于分类时引入一种训练结果信息量评价指标来改进输出权值矩阵的求解方法,并增加隐层输出矩阵竞争机制来提高ELM的稳定性。为了进一步提高ELM的分类正确率,借鉴神经网络集成的理论,提出一种选择性集成ELM分类器。在集成方法中采用改进Bagging法并提出一种基于网络参数向量的相似度评价方法和选择性集成策略。最后通过UCI数据测试表明,同Bagging法和传统的全集成法相比,该方法拥有更为优秀的分类性能。 相似文献
8.
极限学习机( Extreme Learning Machine , ELM)是一种新型的单馈层神经网络算法,克服了传统的误差反向传播方法需要多次迭代,算法的计算量和搜索空间大的缺点,只需要设置合适的隐含层节点个数,为输入权和隐含层偏差进行随机赋值,一次完成无需迭代。研究表明股票市场是一个非常复杂的非线性系统,需要用到人工智能理论、统计学理论和经济学理论。本文将极限学习机方法引入股票价格预测中,通过对比支持向量机( Support Vector Machine , SVM)和误差反传神经网络( Back Propagation Neural Network , BP神经网络),分析极限学习机在股票价格预测中的可行性和优势。结果表明极限学习机预测精度高,并且在参数选择及训练速度上具有较明显的优势。 相似文献
9.
为降低特征噪声对分类性能的影响,提出一种基于极限学习机(extreme learning machine,ELM)的收缩极限学习机鲁棒算法模型(CELM)。采用自编码器对输入数据进行重构,将隐层输出值关于输入的雅克比矩阵的F范数引入到目标函数中,提取出更具鲁棒性的抽象特征表示,利用提取到的新特征对常规的ELM层进行训练,提高方法的鲁棒性。对Mnist、UCI数据集、TE过程数据集以及添加不同强度的混合高斯噪声之后的Mnist数据集进行仿真,实验结果表明,提出的方法较ELM、HELM具有更高的分类精度和更好的鲁棒性。 相似文献
10.
《计算机光盘软件与应用》2013,(2):65-66
使用极限学习机(ELM)的方法进行图像分割问题研究。针对传统图像分割方法中存在着结构设计复杂、所需时间较长、造成图像分割分辨率低,清晰度不高等问题,提出了一种基于极限学习机的图像分割算法。在确定了最优参数的基础上,建立了基于ELM的图像分割算法。最后仿真实验证明本文提出的算法能快速有效的分割图像,图像分割孤立点少,边缘明显,同时该算法大大的缩短了样本的训练时间。 相似文献
11.
12.
13.
14.
15.
《计算机科学与探索》2021,16(8)
极限学习机(ELM)是一种单隐层前向网络的训练算法;随机确定输入层权值和隐含层偏置;通过分析的方法确定输出层的权值;ELM克服了基于梯度的学习算法的很多不足;如局部极小、不合适的学习速率、学习速度慢等;却不可避免地造成了过拟合的隐患且稳定性较差;特别是对于规模较大的数据集。针对上述问题;提出多样性正则化极限学习机(DRELM)的集成方法。首先;从改变隐层节点参数的分布来为每个ELM随机选取输入权重;采用LOO交叉验证方法和 方法来寻找每个基学习器的最优隐节点数;计算并输出最优隐含层输出权重;训练出较好且具有差异性的基学习器。然后;将有关多样性的新惩罚项显式添加到整个目标函数中;迭代更新每个基学习器的隐含层输出权重并输出结果。最后;集成所有基学习器的输出结果对其求平均值;得到整个网络模型最后的输出结果。该方法能够有效地实现多样性正则化极限学习机(RELM)的融合;兼顾准确率和多样性。在10个不同规模的UCI数据集上的实验结果表明所提出的方法是行之有效的。 相似文献
16.
针对选择性集成逆向传播神经网络(GASEN-BPNN)模型训练学习速度慢,选择性集成极限学习机(GASEN-ELM)模型建模精度稳定性差等问题,提出一种基于遗传算法的选择性集成核极限学习机(GASEN-KELM)建模方法。该方法首先通过对训练样本进行随机采样获取子模型训练样本;然后采用泛化性、稳定性较佳的核极限学习机(KELM)算法建立候选子模型,通过标准遗传算法工具箱,依据设定阈值按进化策略优化选择最佳子模型;最后通过简单平均加权集成的方式获得最终GASEN-KELM模型。采用标准混凝土抗压强度数据验证了所提出方法的有效性,并与GASEN-BPNN和GASEN-ELM选择性集成算法进行比较,表明所提出方法可以在模型学习速度和建模预测稳定性方面获得较好的均衡。 相似文献
17.
18.
支持向量机 (Support vector machine, SVM) 在语种识别中已经起到了重要的作用.近些年来,极限学习机 (Extreme learning machine, ELM) 在很多领域取得了成功的应用.相比于 SVM, ELM 最大的优点在于极易实现、训练速度快,而且通常可以取得与 SVM 相近甚至优于 SVM 的识别性能. 鉴于 ELM 这些优异的特点,本文将 ELM 引入到语种识别中,并针对 ELM 由于随机初始化模型参 数所带来的潜在问题,提出了流形正则化极限学习机 (Manifold regularized extreme learning machine, MRELM) 算法.实验结果表明,在高斯超矢量(Gaussian supervector, GSV)特征空间上,相对于 SVM 基线系统,该算法对30秒语音的识别性能有明显的提升. 同时该算法也可以成功地应用到 i-vector 特征空间中,取得与当前主流的打分算法相近的识别性能. 相似文献