共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
识别社会关系网络中对传播过程影响力大的关键节点,对于理解并控制网络上的传播具有重要意义.文中提出了一种基于网络社团结构的节点影响力度量方法,基本思想是用与某个节点直接相连的社团的数目(称为该节点的VC值)来衡量该节点的传播能力.通过单源感染的SIR传播模型实验发现,在根据已有节点重要性度量指标进行排序后,用节点的VC值可进一步挖掘传播能力强的奇异节点.通过单源感染的SI传播模型的实验发现,在具有相同度值或K-壳值(KS)的节点中,以VC较高的节点作为感染源,感染速度更快且可获得更大的传播范围. 相似文献
4.
复杂网络中最具影响力节点的识别对网络动力学如加速信息的扩散或抑制流言的传播都具有重要影响意义。为了给节点影响力做出具体排序,在已有的各种最具影响力节点识别方法的基础上,提出了一种基于社团结构和k-shell节点法的节点影响力识别方法,基本思想为利用某个节点处于不同社团的邻居节点的ks值判断节点影响力(称为Nc值)——识别ks值相同的节点的不同影响力。并通过单感染源传染的SIR模型进行仿真,发现Nc值较高的节点不仅最终节点的影响范围较大,传播速度也快于其他节点。 相似文献
5.
以新浪微博为研究对象,提出一种适用性更广、考虑因素更全面的微博用户影响力度量算法,将用户基本属性、用户交互行为和用户博文内容三个维度因素融入传统PageRank算法中,提出了一种多维度微博用户影响力度量算法——MDIR(multi-dimension influence rank)。实验结果表明,MDIR算法相较于其他常用的五种影响力度量算法,能更加全面、真实地反映微博用户的实际影响力。 相似文献
6.
微博用户影响力分析作为社交网络分析的重要组成部分,一直受到研究人员的关注。针对现有研究工作分析用户行为时间性的不足和忽略用户与参与话题之间关联性等问题,提出了一种面向微博话题的用户影响力分析算法——基于话题和传播能力的用户排序(TSRank)算法。首先,基于微博话题分析用户转发行为时间性,进一步构建用户转发和用户博文转发两种话题转发关系网络,预测用户话题信息传播能力;然后,分析用户个人历史微博和背景话题微博文本内容,挖掘用户与背景话题之间的关联性;最后,综合考虑用户话题信息传播能力以及用户与背景话题间关联性计算微博用户影响力。爬取新浪微博真实话题数据进行实验,实验结果表明,话题关联度更高用户的话题转发量明显大于关联度很低的用户,引入用户转发行为时间性相比无转发时间性,TSRank算法的捕获率(CR)提高了18.7%,进一步与典型影响力分析算法WBRank、TwitterRank和PageRank相比,TSRank算法在准确率和召回率上分别提高了5.9%、8.7%、13.1%和6.7%、9.1%、14.2%,验证了TSRank算法的有效性。该研究成果对社交网络的社会属性、话题传播等理论研究以及好友推荐、舆情监控等应用研究具有支撑作用。 相似文献
7.
用户影响力度量是目前微博研究的基础和热点方向,为了提高微博传播影响力度量的准确性,提出一种基于行为权值的微博用户影响力度量算法。对网络用户的转发、评论和提及等行为进行分析,将数据输入到最小二乘支持向量机中进行学习找到最合理的权值,并建立传播影响力度量模型,采用具体数据对算法的性能进行仿真测试。结果表明,相对于其他微博用户影响力度量算法,该算法不仅提高了微博用户影响力的度量准确性,而且可以准确刻画各种用户行为对网络传播力贡献。 相似文献
8.
随着Web技术的发展,微博已经成为最受欢迎的社交平台之一了。在中国,微博用户规模已经达到了2.42亿。微博用户影响力计算对社会信息在微博里面有效传播,正确传播,健康传播有着非常重要的意义。本文以新浪微博数据为实验的对象,通过改进传统的PageRank模型,提出了的新型用户影响力排名算法---MBUI-Rank(Micro-Blog User Influence Rank)算法。在考虑传统PageRank方法的用户链接关系的同时,MBUI-Rank算法还考虑到微博用户自身行为活动,构建用户对微博的影响的动态挖掘模型。实验结果表明,MBUI-Rank算法与传统的PageRank算法相比,可以更加真实有效地反映微博用户的实际影响力。 相似文献
9.
10.
由于微博高影响力用户在商品营销、社会舆论引导等方面起着重要的作用,因此挖掘高影响力用户成为了微博社交网络中的热点研究问题。针对微博用户影响力计算中存在交互行为与用户自身因素分析不全面的问题,提出了微博用户影响力计算方法MBUI-SFIM(Micro-blog userinfluence based on user’s self-factors and interaction computing model)。该方法考虑了微博用户直接影响力和间接影响力两个方面:在用户直接影响力计算中,通过对用户的自身因素如微博用户粉丝数、用户活跃度、近期微博质量等的分析,计算出用户的初始影响力,然后分析用户互动行为如用户的微博可见率、微博用户互动系数,计算出用户传播能力,最后将初始影响力与用户传播能力相结合,基于改进PageRank算法计算出用户直接影响力;在用户间接影响力计算中,通过对用户网络图连接结构进行分析,根据不相邻用户连接路径的不同,将用户间接影响具体分为简单路径、重复路径、复杂路径3种情况进行讨论,从而计算出用户间接影响力。实验结果表明,相比PageRank算法和MR-UIRank算法,所提算法在用户排名准确性上分别提高了14.8%和8.3%。 相似文献
11.
基于HRank的微博用户影响力评价 总被引:1,自引:0,他引:1
针对微博社交网络平台中的用户影响力评价问题,提出了一种基于HRank的评价算法。该算法将评价科学家科研绩效影响力的判定参数H指数引入进来,构造出能反映用户影响覆盖度的粉丝H指数和用户微博受追捧程度的微博被转发H指数,以分别表征用户的静态特征和在微博平台上的动态行为特征。在此基础上,结合粉丝H指数和微博被转发H指数构建出对用户影响力进行综合评价的HRank模型。粉丝数与用户影响力的相关性不是很强,同样数据集下相对PageRank,HRank用户影响力模型与新浪用户影响力官方排名更为接近,可有效实现对微博用户影响力的客观评判。 相似文献
12.
近年来微博作为一种新兴的社交网络逐渐被广大用户使用.微博信息简短、更新迅速、包含信息量大,给微博用户获取信息带来了诸多不便,因此,利用影响力分析的手段找到具有较大影响力的微博用户具有重大意义.微博内容较传统的媒体信息具有较强的时效性和权威性,同时微博用语也极其不规范,这给微博用户影响力的分析带来了极大的困难.首先对获取的微博用户信息进行领域的划分,采用基于微博内容和用户关注的方式将用户归类到其所属的领域.其中,采用新词发现以及特征扩展的方法来提高划分结果的准确性.然后,对各个领域的用户进行影响力分析,提出3种影响力传播模型,用户最终的影响力大小根据3种模型的结果进行加权计算.最后对实验结果进行分析、比较,证明了计算用户影响力的方法能取得较优的结果. 相似文献
13.
14.
针对微博中用户影响力分析这个问题,提出用户影响力的计算方法。该方法首先提出用户自身影响力以及用户被影响力的概念,并根据用户自身特征与用户粉丝情况得出其计算公式,从而可以综合考虑用户在微博中的所有信息,计算出用户影响力。实验结果表明,这种计算方法能比较好地反映用户在其粉丝中的影响力。 相似文献
15.
微博社区中用户的影响力对微博信息的有效传播具有重要意义。为了快速并准确地寻找微博社区信息传播的规律,提出一种基于微博社区计算用户影响力的USR算法。首先提取种子用户的数据,利用R-C模型进行微博社区发现,在划分好的社区中选取一个社区;然后依据USR算法,对社区内的用户进行影响力计算;最后输出用户的影响力。以新浪微博数据集为例,提出孤立点的概念和信息传播实际影响人次覆盖率评价指标,将USR算法与传统影响力算法进行对比。实验结果表明,使用USR算法能够得到较优的结果。 相似文献
16.
17.
在已有PageRank算法构建的微博用户影响力评估模型中,存在用户自身属性信息欠缺以及在用户不活跃期间其影响力被误判下降的问题。为此,综合考虑用户自身的属性,基于用户的活跃度、认证信息及博文质量来确定其自身的基本影响力,通过引入用户博文的传播率挖掘用户的潜在影响力,结合用户不同好友的质量,基于改进的PageRank算法构建微博用户影响力评估算法。实验结果表明,与改进BWPR算法相比,该算法准确率、召回率和F值分别提高13.5%、10.1%和12.3%,能准确、客观地反映微博用户的实际影响力,可为社交网络中的意见领袖挖掘、信息传播和舆论引导等研究提供参考。 相似文献
18.
《计算机应用与软件》2017,(1)
微博作为舆情分析中基础数据的主要来源之一,如何对其进行有效提取是数据获取的关键问题。为此,提出一种基于用户影响力的数据提取算法,以满足舆情系统对数据的需求。该算法首先利用模拟登录技术获取用户关系并依此构建用户网络,再根据自主设计的用户影响力计算方法计算出影响力,进而建立符合微博特征的影响力最大化模型挖掘出最具传播能力的k个节点,最后爬取相应的微博数据。实验证明,该算法能够有效提高获取数据的质量,为舆情分析提供更好的数据支持。 相似文献
19.
《计算机应用与软件》2017,(5)
随着Web技术的发展,微博逐渐成为当下最流行的社交平台之一。微博中用户影响力计算是相关研究中的焦点问题。通过对PageRank模型的改进,提出一种新的用户影响力挖掘算法PR4WB(PageRank for Micro Blogs),解决了传统的PageRank算法由于页面权威值的等分传递带来的潜在误差过大的问题。PR4WB算法在考虑微博中用户关系的同时,利用社会网络概念将自身的活跃度、博文质量及可信性加以关联,形成动态的评价模型。基于Twitter数据的实验表明,PR4WB算法能更加准确、客观地反映出用户的实际影响力。 相似文献
20.
随着微博的迅速兴起和其影响力的不断提高,提取微博信息传播特征和构建传播模型已成为了研究热点。针对用户转发行为,首先分析了信息传播机制;然后从影响用户转发行为的发布用户、接收用户、用户亲密度和信息时效性4个方面提取出8个特征因素进行建模;在借鉴传染病动力学SIR模型的基础上,引入用户行为分析和接触节点,提出基于用户行为分析的SCIR模型,并给出动力学方程;最后利用新浪微博真实转发数据验证模型的合理性。实验结果表明,考虑用户转发行为的8个影响因素,结合行为分析结果,能够较好地拟合信息传播过程。 相似文献