首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《天然气化工》2015,(4):15-18
在320~560℃,0.06MPa~0.1MPa(g),氧烯比和水烯比(物质的量比)分别为0.55~0.85、11~20的条件下,使用自制丁烯氧化脱氢HS-2型催化剂在等温积分反应器中,研究了1-丁烯生成丁二烯的反应过程,并考察了原料丁烯组成及操作条件对丁烯转化率、丁二烯选择性的影响。实验结果表明:随着温度的升高,1-丁烯转化率先增加后基本保持不变,丁二烯的选择性基本不变;随着氧烯比的升高,1-丁烯转化率渐渐增大,丁二烯选择性随着氧烯比的升高,下降不明显;水烯比对丁二烯选择性影响不大,水烯比升高使得1-丁烯转化率略有降低;铁系催化剂HS-2的活性温度区间较宽,可适用于绝热反应器;丁烯原料可选1-丁烯和2-丁烯(顺、反丁烯)混合物。  相似文献   

2.
为解决1,3-丁二烯中痕量烃类杂质丙炔等组分无法分离的问题,采用美国Agilent公司3种牌号大口径KCl型Al_2O_3柱,考察了1,3-丁二烯产品中痕量烃类杂质的分离情况,并建立了定量分析方法。结果表明:不同牌号Al_2O_3/KCl柱的分离效果差异较大,CP-Al_2O_3/KCl柱优于其他牌号;采用出峰顺序相同的2根Al_2O_3/KCl柱串联并优化色谱条件,能显著改善异戊烷、1,2-丁二烯、丙炔、正戊烷和1,3-丁二烯的分离,同时兼顾乙炔、丙二烯和异丁烷、正丁烷的良好分离,克服了Al_2O_3/KCl单柱无法满足关键组分基线分离的问题,同时满足痕量炔烃准确检测的需要。定量结果表明,各组分的检出限均低于2μg/g,相对标准偏差小于6.07%,加标回收率为84.5%~107.8%。  相似文献   

3.
《石油化工》2015,44(10):1157
针对乙醇和乙醛合成1,3-丁二烯的反应特点,设计并制备了MgO/γ-Al2O3和ZrO2/γ-Al2O3催化剂;采用TG-DTG,XRD,SEM,BET,TPD等方法对催化剂的晶相结构、微观结构和酸碱性质进行了表征;在固定床微型反应装置上对MgO/γ-Al2O3和Zr O2/γ-Al2O3催化剂上乙醇与乙醛合成1,3-丁二烯的反应活性进行了评价。实验结果表明,MgO/γ-Al2O3催化剂催化合成1,3-丁二烯的效果较好,当MgO的负载量为5%(w)时,MgO在γ-Al2O3载体表面分散均匀、比表面积较高、催化剂表面的酸性位和碱性位数量适中;在该催化剂上,当反应条件为350℃、常压、液态空速1.8 h-1、乙醇与乙醛的体积比2.5∶1时,1,3-丁二烯的选择性为36.64%,乙醇和乙醛的转化率分别为50.42%和56.49%。  相似文献   

4.
宋世超 《石油化工》2023,(12):1723-1727
在1,3-丁二烯的生产过程中,存在高浓度1,3-丁二烯聚合导致装置停工的问题,还有高浓度的丙炔、丙二烯、1-丁炔及乙烯基乙炔等不饱和烃类物料采出,这些高度不饱和烃类存在爆炸风险。从丙炔和碳四炔烃的排放安全性及1,3-丁二烯产品竞争力方面,对前置丙炔塔N-甲基吡咯烷酮(NMP)法1,3-丁二烯抽提装置和传统NMP法1,3-丁二烯抽提装置进行了对比。结果表明,与传统NMP法1,3-丁二烯抽提装置相比,前置丙炔塔NMP法1,3-丁二烯抽提装置排放的丙炔物料中丙炔浓度更低,安全性更高;碳四炔烃的排放是气相稀释和液相稀释结合的方式,工艺设计更合理、安全性更高;由于丙炔塔前置的特点,在装置中未加入对叔丁基邻苯二酚/甲苯阻聚剂,使1,3-丁二烯产品中没有甲苯杂质,对下游装置更友好,提高了1,3-丁二烯产品的竞争力。  相似文献   

5.
以Ni(AcAc)_2~8-Al(C_2H_5)_3-P(OC_6H_5)_3为催化体系,将C_4馏分中的丁二烯进行了环化二聚。研究结果表明:含35%丁二烯的C_4馏分,丁二烯的转化率不<95%。产品收率:1,5-环辛二烯为80%~85%,4-乙烯基环己烯为8%,1,5,9-环十二碳三烯为0%~10%。催化体系的催化效率为5000g丁二烯/g Ni,当C_4馏分中丁二烯的含量提高到60%时,其催化效率为15000g丁二烯/g Ni。 (*Ni(AcAc)_2——乙酰丙酮镍)  相似文献   

6.
C_4烃和二甲基甲酰胺的沸点相差达150℃左右,在没有程序升温的气相色谱仪上选用了聚乙二醇1500为固定液,成功地进行了二元系的分析,可在三分钟内完成。测定了校正因子,定量分析的精度在0.004分子分数以内。两台色谱仪联合操作,用二甲基甲酰胺为固定液分离 C_4烃,进行了反丁烯-2、顺丁烯-2与二甲基甲酰胺;异丁烯、丁二烯-1,3与二甲基甲酰胺两个三元系的定量分析,为上述体系的汽液平衡研究创造了有利条件。  相似文献   

7.
丁二烯     
约有93%聚丁二烯是用来制作轮胎的。另一主要用途是高冲击强度聚苯乙烯塑料。预测当前聚丁二烯橡胶所需要的丁二烯—1,3原料理应参考乳液聚合聚丁二烯数据,本文的預测却是根据立体有择丁二烯—1,3合成,即溶液聚合聚丁二烯数据。丁二烯—1,3藉1,4或1,2加聚作用可转化为高分子量聚合物。另外,1—2—聚丁二烯又  相似文献   

8.
丁二烯调聚经甲辛醚制1-辛烯   总被引:2,自引:0,他引:2  
丁二烯与甲醇经调聚反应生成2,7-辛二烯甲醚,加氢精制后得到的甲辛醚在γ-Al2O3催化剂作用下裂解生成1-辛烯。在一定的调聚反应条件下,2,7-辛二烯甲醚的精馏收率不小于88%(纯度不小于99%)。以Pd/C为加氢催化剂,2,7-辛二烯甲醚转化率及甲辛醚选择性均达100%。采用γ-Al2O3对甲辛醚裂解制1-辛烯的过程进行考察,结果表明,催化剂的催化性能除与酸强度有关外,与其结构有密切关系,具有较大的孔径和比表面积的γ-Al2O3催化剂是甲辛醚催化裂解的较佳催化剂,高的催化选择性需要较弱的酸中心和较大的孔径。在甲辛醚进料空速1~3h-1、反应温度280~330℃的条件下,甲辛醚单程转化率94%~96%,1-辛烯选择性87%左右,单程收率83%。  相似文献   

9.
富含1,3-丁二烯的裂解碳四选择加氢工艺研究   总被引:2,自引:1,他引:1  
分别采用19mm的等温固定床反应器和50mm的绝热固定床反应器对富含1,3-丁二烯的裂解碳四进行了选择加氢工艺研究。通过等温固定床反应器选择加氢实验,确立了绝热固定床反应器选择加氢放大实验的操作条件:压力1.5M Pa、物料入口温度30℃、新鲜进料空速5h-1、氢与1,3-丁二烯的摩尔比1.2、循环比30。在此条件下,绝热固定床反应器选择加氢放大实验结果:1,3-丁二烯的质量分数由52.58%降至1.29%,1-丁烯的质量分数由11.06%提高到41.15%,单烯烃的选择性达到97.83%,1-丁烯的选择性达到58.67%。  相似文献   

10.
许红星 《石化技术》1989,(4):284-288
GPB法丁二烯抽提装置是我厂1976年从日本瑞翁公司引进的以二甲基甲酰胺(以下简称DMF)为溶剂,从裂解C_4中分离聚合级丁二烯的工艺设计年产丁二烯4.5×10~4t,具有较先进的经济技术指标。但该装置对环境污染比较严重,特别是丁二  相似文献   

11.
目前丁二烯-1,3(以后简称丁二烯)大都是从石脑油高温裂解制取乙烯时付产C_4馏份中分离出来的。石脑油裂解气体经过分离乙烯及丙烯后,所得的C_4馏份,含有较多的烯烃及二烯经,少量烷烃,同时还有约  相似文献   

12.
N-甲基吡咯烷酮法萃取精馏分离C_4馏分中1,3-丁二烯的模拟   总被引:1,自引:0,他引:1  
采用NRTL方程和UNIFAC模型计算N-甲基吡咯烷酮(NMP)-C4物系的汽液平衡数据,由实验数据回归得到NRTL方程的二元交互作用参数。采用AspenPlus流程模拟软件对NMP法萃取精馏分离C4馏分中1,3-丁二烯的萃取精馏塔进行模拟,模拟结果与实验结果的相对误差小于10%,表明萃取精馏塔的数学模型可靠。考察了回流比、溶剂比(溶剂NMP与进料C4的质量比)、理论板数等因素对分离1,3-丁二烯的影响。模拟结果表明,萃取精馏塔的最佳工艺条件为:理论板数70~80块,原料进料位置为第48~52块理论板,溶剂比12,回流比0.5~1.0,溶剂进料温度40~50℃,塔顶采出量0.150~0.155kg/h。  相似文献   

13.
以苯为溶剂,正丁基锂为引发剂,在充氮条件下,利用膨胀计进行了丁二烯聚合增长反应动力学研究。结果表明,增长反应速度对单体浓度呈一级关系;对引发剂浓度的反应级数(β)小1,并随聚合反应温度的上升而增加,其关系式为β=0.0285+5.292×10~(-3)t;求得表观反应速率常数的通式为k_(1.4)=6.898×10~(15)·e~(-24280/rRt),生成1,4和1,2-结构的表观分速率常数通式分别为k_(1.4)=3.565×10~(15)·e~(-23830/RT)和k_(1.2)2=2.083×10~(16)·e~(-26460/RT);此外,根据解离平衡常数K和温度t的关系,求得上述体系的解缔热△H=26.09kJ/mol,从而计算出真实活化能E=75.52kJ/mol;在苯溶剂中丁二烯聚合的1,2-结构含量,即B.与温度的关系式为:B_v=8.692+0.0223t。  相似文献   

14.
基于碳四烯烃叠合反应工艺,设计并制备了酸性树脂(KC110、Amberlyst35)载钯双功能催化剂,用于一步法催化1,3-丁二烯选择性加氢和异丁烯叠合反应。借助电子微区探针分析(EPMA)、N2物理吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等手段对其物化性质进行表征,并进一步考察了双功能催化剂在碳四烯烃临氢叠合反应过程中的催化性能。结果表明:0.10%Pd/KC110双功能催化剂负载的钯纳米颗粒主要分布在树脂大孔表层结构,平均粒径为3~10 nm,且树脂载体本身的酸性和孔结构保存完好;在反应温度为25℃、压力为1.4~1.6 MPa、质量空速为2.7 h-1、氢气/丁二烯摩尔比为1.5的条件下进行0.10%Pd/KC110催化碳四烯烃临氢叠合反应,1,3-丁二烯可以完全脱除,异丁烯转化率高于81.5%,叠合产物中碳八选择性为75.1%。  相似文献   

15.
TQ221.211200604122裂解C5馏分中二烯烃热二聚过程的研究〔刊〕王秀敏,包宗宏(南京工业大学化学化工学院)∥南京工业大学学报.-2005,27(4).-53~58用封管实验方法考察了二聚反应温度、反应停留时间和不同环戊二烯(CPD)含量对C5馏分热二聚过程中各二烯烃组分反应行为的影响。结果表明,当反应温度在115~125℃、停留时间2~3h、CPD质量分数大于17%时,CPD的转化率不小于92%,异戊二烯、间戊二烯和1,3丁二烯的转化率分别在7%,1.5%和13%左右,双环戊二烯(DCPD)的收率接近80%。C5原料中CPD的含量高,其转化率和DCPD收率也高。图7表2参16(段…  相似文献   

16.
利用气相色谱法-脉冲放电氦离子化检测器(PD-HID),结合阀切割技术,建立了测定原料乙烯和丙烯中痕量炔烃和二烯烃的方法。以原料乙烯和丙烯为研究对象,采用外标法,考察了该方法的精密度、回收率和检测限。结果表明:采用该方法,测定了标样中乙炔、丙二烯、丙炔和1,3-丁二烯4种组分的平均回收率均为92.15%~109.92%;5次重复测定结果的平均相对标准偏差均小于3.30%,表明该方法的准确度和精密度较高。标样中乙炔、丙二烯、丙炔和1,3-丁二烯的最低检测限依次为10,25,33,73μL/m~3,均低于GB/T 3391—2002,GB/T 3392—2003的检测结果。  相似文献   

17.
采用 MoCl_3(OC_(10)H_(21))_2-(i-Bu)_2AlO Ph 引发体系,在正己烷溶剂中,引发丁二烯聚合反应,考察烯丙基氯添加剂对聚合产物的分子量、聚合速度以及微观结构的影响。试验结果表明,分子量随烯丙基氯用量增加而显著降低;在一定的烯丙基氯用量范围内,丁二烯聚合速度降低很少;烯丙基氯用量对产物微观结构的影响甚微,分子链中1,2-结构含量大体上在85%左右,且几乎无顺式-1,4链节。  相似文献   

18.
本文介绍丁烯氧化脱氢制丁二烯钼系七组份催化剂试验室研究的初步结果。该催化剂具有反应温度低、收率高、初活性较小、稳定性好等特点。在反应温度380℃、丁烯空速120—180时~(-1)、丁烯∶氧∶水=1∶1∶6条件下,在固定床中丁二烯收率为80—82%,丁二烯选择性为90—92%。在ф50mm 流化床上进行1013小时的稳定性试验,丁二烯收率和选择性平稳不变,总平均结果,丁二烯收率80%,丁二烯的选择性91%(表观)。文中还报导了丁烯-2氧化脱氢丁烯总转化动力学考察的结果。丁烯-2氧化脱氢的表观总包转化速度公式为 r_B=A_oe~(-E/RT)P_B~(0.8)P_o~(0.2)。  相似文献   

19.
以正丁基锂为引发剂,四氢映喃(THF)为溶剂,研究丁二烯阴离子聚合增长反应动力学。试验在高纯氮保护下,以膨胀计法进行。结果表明,增长反应对单体浓度和引发剂浓度的反应级数皆为一级关系,增长反应的总速度常数 kp=9.30×10~4exp(-6900/RT)1/mol·min,形成1,4-结构的分速度常数数 k_3-1.05×10~5exp(-8530/RT)1/mol·min,形成1,2-结构的分速度常数k_4=6.73×10~4exp(-6790/RT)1/mol·min,以及在 THF 中产物的1,2-结构含量 a=7.24×10~(-I)exp(110/RT)。  相似文献   

20.
1,3-丁二烯(通称丁二烯,下同)是一种重要的石油化工基础有机原料和合成橡胶单体,是C4馏分中最重要的组分之一,在石油化工烯烃原料中的地位仅次于乙烯和丙烯。由于其分子中含有共轭二烯,可以发生取代、加成、环化和聚合等反应,使得其在合成橡胶和有机合成等方面具有广泛的用途,可以合成顺丁橡胶(BR)、丁苯橡胶(SBR)、丁腈橡胶、苯乙烯-丁二烯-苯乙烯弹性体(SBS)、  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号