首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat-resistant super alloy material like Inconel 718 machining is an inevitable and challenging task even in modern manufacturing processes. This paper describes the genetic algorithm coupled with artificial neural network (ANN) as an intelligent optimization technique for machining parameters optimization of Inconel 718. The machining experiments were conducted based on the design of experiments full-factorial type by varying the cutting speed, feed, and depth of cut as machining parameters against the responses of flank wear and surface roughness. The combined effects of cutting speed, feed, and depth of cut on the performance measures of surface roughness and flank wear were investigated by the analysis of variance. Using these experimental data, the mathematical model and ANN model were developed for constraints and fitness function evaluation in the intelligent optimization process. The optimization results were plotted as Pareto optimal front. Optimal machining parameters were obtained from the Pareto front graph. The confirmation experiments were conducted for the optimal machining parameters, and the betterment has been proved.  相似文献   

2.
This paper presents a new approach to determine the optimal cutting parameters leading to minimum surface roughness in face milling of X20Cr13 stainless steel by coupling artificial neural network (ANN) and harmony search algorithm (HS). In this regard, advantages of statistical experimental design technique, experimental measurements, analysis of variance, artificial neural network and harmony search algorithm were exploited in an integrated manner. To this end, numerous experiments on X20Cr13 stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness was created using a feed forward neural network exploiting experimental data. The optimization problem was solved by harmony search algorithm. Additional experiments were performed to validate optimum surface roughness value predicted by HS algorithm. The obtained results show that the harmony search algorithm coupled with feed forward neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.  相似文献   

3.
Inconel 718 is a difficult-to-machine material while products of this material require good surface finish. Therefore, it is essential for the evaluation and prediction of surface roughness of machined Inconel 718 workpiece to be developed. An analytical model for the prediction of surface roughness under laser-assisted end milling of Inconel 718 is proposed based on kinematics of tool movement and elastic response of workpiece. The actual tool trajectory is first predicted with the consideration of overall tool movement, elastic deformation of tool, and the tool tip profile. The tool movements include the translation in feed direction and the rotation along its axis. The elastic deformation is calculated based on the previously established milling force prediction model. The tool tip profile is predicted based on the tool tip radius and angle. The machined surface profile is simulated based on the tool trajectory with elastic recovery, which is considered through the comparison between the minimum thickness and actual cutting thickness. Experiments are conducted in both conventional and laser-assisted milling under seven different sets of cutting parameters. Through the comparison between the analytical predictions and experimental measurements, the proposed model has high accuracy with the maximum error less than 27%, which is more accurate for lower feed rate with error less than 3%. The proposed analytical model is valuable for providing a fast, credible, and physics-based method for the prediction of surface roughness in milling process.  相似文献   

4.
In the current work, some experiments were performed based on a design of experiment (DOE) technique called full factorial design. The experimental results are discussed in statistical analysis, and the system was modeled using the artificial neural network (ANN) and subsequently optimized by a genetic algorithm (GA). The statistical analysis shows that the main effects and some 2-interaction effects affect the surface roughness and flank wear. The results show that the feed rate, nose radius, and approach angle have a significant effect on the flank wear and the surface roughness, but the cutting velocity has a significant effect on the flank wear alone. The optimum values of cutting parameters were identified and the resultant optimum values of flank wear and surface roughness were found to be in good agreement with the results of a validation experiment under a similar condition. The optimized values showed a significant reduction in roughness and flank wear.  相似文献   

5.
Surface roughness, an indicator of surface quality is one of the most-specified customer requirements in a machining process. For efficient use of machine tools, optimum cutting parameters (speed, feed, and depth of cut) are required. So it is necessary to find a suitable optimization method which can find optimum values of cutting parameters for minimizing surface roughness. The turning process parameter optimization is highly constrained and non-linear. In this work, machining process has been carried out on brass C26000 material in dry cutting condition in a CNC turning machine and surface roughness has been measured using surface roughness tester. To predict the surface roughness, an artificial neural network (ANN) model has been designed through feed-forward back-propagation network using Matlab (2009a) software for the data obtained. Comparison of the experimental data and ANN results show that there is no significant difference and ANN has been used confidently. The results obtained conclude that ANN is reliable and accurate for predicting the values. The actual R a value has been obtained as 1.1999???m and the corresponding predicted surface roughness value is 1.1859???m, which implies greater accuracy.  相似文献   

6.

Parametric optimization of electric discharge machining (EDM) process is a multi-objective optimization task. In general, no single combination of input parameters can provide the best cutting speed and the best surface finish simultaneously. Genetic algorithm has been proven as one of the most popular multi-objective optimization techniques for the parametric optimization of EDM process. In this work, controlled elitist non-dominated sorting genetic algorithm has been used to optimize the process. Experiments have been carried out on die-sinking EDM by taking Inconel 718 as work piece and copper as tool electrode. Artificial neural network (ANN) with back propagation algorithm has been used to model EDM process. ANN has been trained with the experimental data set. Controlled elitist non-dominated sorting genetic algorithm has been employed in the trained network and a set of pareto-optimal solutions is obtained.

  相似文献   

7.
Wire electrical discharge turning (WEDT) is an emerging area, and it can be used to generate cylindrical forms on difficult to machine materials by adding a rotary axes to WEDM. The selection of optimum cutting parameters in WEDT is an important step to achieve high productivity while making sure that there is no wire breakage. In the present work, the WEDT process is modelled using an artificial neural network with feed-forward back-propagation algorithm and using adaptive neuro-fuzzy inference system. The experiments were designed based on Taguchi design of experiments to train the neural network and to test its performance. The process is optimized considering the two output process parameters, material removal rate, and surface roughness, which are important for increasing the productivity and quality of the products. Since the output parameters are conflicting in nature, a multi-objective optimization method based on non-dominated sorting genetic algorithm-II is used to optimize the process. A pareto-optimal front leading to the set of optimal solutions for material removal rate and surface roughness is obtained using the proposed algorithms. The results are verified with experiments, and it is found to improve the performance of WEDT process. Using this set of solutions, required input parameters can be selected to achieve higher material removal rate and good surface finish.  相似文献   

8.
通过正交试验法对钛合金TC4进行了车削试验并对试验数据处理,得到切削温度、表面粗糙度关于切削三要素的多元线性回归方程。以切削速度、进给量和背吃刀量为优化变量,以最低切削温度、最好表面粗糙度、最大材料去除率为目标构建了切削参数的多目标优化模型。利用MATLAB中基于遗传算法的多目标优化函数对优化模型进行求解,得到优化问题的Pareto最优解并加以分析。  相似文献   

9.
Nowadays, manufacturers rely on trustworthy methods to predict the optimal cutting conditions which result in the best surface roughness with respect to the fact that some constraining functions should not exceed their critical values because of current restrictions considering competition found among them in delivering economical and high-quality products to the stringent customers in the shortest time. The present research deals with a modified optimization algorithm of harmony search (MHS) coupled with modified harmony search-based neural networks (MHSNN) to predict the cutting condition in longitudinal turning of X20Cr13 leading to optimum surface roughness. To this end, several experiments were carried out on X20Cr13 stainless steel to attain the required data for training of MHSNN. Feed-forward artificial neural network was utilized to create predictive models of surface roughness and cutting forces exploiting experimental data, and the MHS algorithm was used to find the constrained optimum of surface roughness. Furthermore, simple HS algorithm was used to solve the same optimization problem to illustrate the capabilities of the MHS algorithm. The obtained results demonstrate that the MHS algorithm is more effective and authoritative in approaching the global solution compared with the HS algorithm.  相似文献   

10.
The present paper is an attempt to predict the effective milling parameters on the final surface roughness of the work-piece made of Ti-6Al-4V using a multi-perceptron artificial neural network. The required data were collected during the experiments conducted on the mentioned material. These parameters include cutting speed, feed per tooth and depth of cut. A relatively newly discovered optimization algorithm entitled, artificial immune system is used to find the best cutting conditions resulting in minimum surface roughness. Finally, the process of validation of the optimum condition is presented.  相似文献   

11.
钛合金较差的切削加工性不利于保证好的表面完整性,影响钛合金零件的使用性能。基于田口方法建立钛合金车削试验模型,考察切削用量对表面粗糙度、刀具寿命、切削力和材料去除率的影响规律,以材料去除率为目标函数,以表面粗糙度、刀具寿命和切削力为约束函数,基于Krig-ing插值的响应曲面法和遗传算法构建了钛合金车削参数优化模型。研究结果表明:钛合金车削过程参数最优的水平组合为v3f1ap1r1E3,优化结果与初始试验相比,表面粗糙度、刀具寿命、切削力和材料去除率分别改善了75.86%、65.16%、36.41%和557.91%。  相似文献   

12.
In this paper, a new effective approach, Taguchi grey relational analysis has been applied to experimental results in order to optimize the high-speed turning of Inconel 718 with consideration to multiple performance measures. The approach combines the orthogonal array design of experiments with grey relational analysis. Grey relational theory is adopted to determine the best process parameters that give lower magnitude of cutting forces as well as surface roughness. The response table and the grey relational grade graph for each level of the machining parameters have been established. The parameters: cutting speed, 475?m/min; feed rate, 0.10?mm/rev; depth of cut, 0.50?mm; and CW2 edge geometry have highest grey relational grade and therefore are the optimum parameter values producing better turning performance in terms of cutting forces and surface roughness. Depth of cut shows statistical significance on overall turning performance at 95% confidence interval.  相似文献   

13.
基于神经网络和遗传算法的薄壳件注塑成型工艺参数优化   总被引:1,自引:0,他引:1  
建立基于神经网络和遗传算法并结合正交试验的薄壳件注塑成型工艺参数优化系统.正交试验法用来设计神经网络的训练样本,人工神经网络有效创建翘曲预测模型;遗传算法完成对影响薄壳塑件翘曲变形的工艺参数(模具温度、注射温度、注射压力、保压时间、保压压力和冷却时间等)的优化,并计算出其优化值.按该参数进行试验,效果良好,可以有效地减小薄壳塑件翘曲变形,其试验数值与计算数值基本相符,说明所提出的方法是可行的.  相似文献   

14.
During the past decade, polymer nanocomposites have emerged relatively as a new and rapidly developing class of composite materials and attracted considerable investment in research and development worldwide. An increase in the desire for personalized products has led to the requirement of the direct machining of polymers for personalized products. In this work, the effect of cutting parameters (spindle speed and feed rate) and nanoclay (NC) content on machinability properties of polyamide-6/nanoclay (PA-6/NC) nanocomposites was studied by using high speed steel end mill. This paper also presents a novel approach for modeling cutting forces and surface roughness in milling PA-6/NC nanocomposite materials, by using particle swarm optimization-based neural network (PSONN) and the training capacity of PSONN is compared to that of the conventional neural network. In this regard, advantages of the statistical experimental algorithm technique, experimental measurements artificial neural network and particle swarm optimization algorithm, are exploited in an integrated manner. The results indicate that the nanoclay content on PA-6 significantly decreases the cutting forces, but does not have a considerable effect on surface roughness. Also the obtained results for modeling cutting forces and surface roughness have shown very good training capacity of the proposed PSONN algorithm in comparison to that of a conventional neural network.  相似文献   

15.
This paper reports the effect and optimization of eight control factors on material removal rate (MRR), surface roughness and kerf in wire electrical discharge machining (WEDM) process for tool steel D2. The experimentation is performed under different cutting conditions of wire feed velocity, dielectric pressure, pulse on-time, pulse off-time, open voltage, wire tension and servo voltage by varying the material thickness. Taguchi’s L18 orthogonal array is employed for experimental design. Analysis of variance (ANOVA) and signal-tonoise (S/N) ratio are used as statistical analyses to identify the significant control factors and to achieve optimum levels respectively. Additionally, linear regression and additive models are developed for surface roughness, kerf and material removal rate (MRR). Results of the confirmatory experiments are found to be in good agreement with those predicted. It has been found that pulse on-time is the most significant factor affecting the surface roughness, kerf and material removal rate.  相似文献   

16.
High-speed end-milling is used for production of variety of parts, dies, and molds made of hardened EN24 steel which are widely used in power and transport industries. Since desired productivity and quality are important in these industries, different strategies are needed for rough and finish end-milling operations. In this paper, a framework is presented for integrating different requirements of high-speed end-milling. In flat end-milling experiments, slots are machined in hardened EN24 steel using single insert cutter under different sets of cutting parameters for roughing and finishing operations. For rough end-milling, the responses such as material removal volume, tool wear and cutting forces are measured with respect to cutting time. A response surface is developed to predict material removal volume and a set of cutting parameters is selected for a given range of material removal volume using differential evolution (DE) algorithm till the tool wear reaches certain value. The experimental data is also used to develop Bayesian-based artificial neural network (ANN) model. Using this ANN model, reference values for cutting force and cutting time are generated for rough end-milling. Similarly, DE is used to predict a set of cutting parameters for a given range of surface roughness using response surface model. The reference cutting force is obtained for finish end-milling using ANN model. These reference values are useful in the monitoring and implementation of control strategy for the high-speed end-milling operations.  相似文献   

17.
The Inconel 718 alloy is widely used in the aerospace and power industries. The machining-induced surface integrity and fatigue life of this material are important factors for consideration due to high reliability and safety requirements. In this work, the milling of Inconel 718 was conducted at different cutting speeds and feed rates. Surface integrity and fatigue life were measured directly. The effects of cutting speed and feed rate on surface integrity and their further influences on fatigue life were analyzed. Within the chosen parameter range, the cutting speed barely affected the surface roughness, whereas the feed rate increased the surface roughness through the ideal residual height. The surface hardness increased as the cutting speed and feed rate increased. Tensile residual stress was observed on the machined surface, which showed improvement with the increasing feed rate. The cutting speed was not an influencing factor on fatigue life, but the feed rate affected fatigue life through the surface roughness. The high surface roughness resulting from the high feed rate could result in a high stress concentration factor and lead to a low fatigue life.  相似文献   

18.
Modeling and optimization of cutting parameters are one of the most important elements in machining processes. The present study focused on the influence machining parameters on the surface roughness obtained in drilling of AISI 1045. The matrices of test conditions consisted of cutting speed, feed rate, and cutting environment. A mathematical prediction model of the surface roughness was developed using response surface methodology (RSM). The effects of drilling parameters on the surface roughness were evaluated and optimum machining conditions for minimizing the surface roughness were determined using RSM and genetic algorithm. As a result, the predicted and measured values were quite close, which indicates that the developed model can be effectively used to predict the surface roughness. The given model could be utilized to select the level of drilling parameters. A noticeable saving in machining time and product cost can be obtained by using this model.  相似文献   

19.
In machining of hard materials, surface integrity is one of the major customer requirements which comprise the study of the changes induced to the workpiece. Surface roughness and residual stress are often considered as the most significant indications of surface integrity. Inducing tensile residual stress during the machining processes is a critical problem which should be avoided or minimized to obtain better service quality and component life. This problem becomes more evident in the presence of rough machined surface because fatigue life of manufactured components might be decreased significantly. Inconel 718 superalloy is one of the hard materials used extensively in the aerospace industries. It is prone to tensile residual stress in machined surface. Thus, controlling and optimizing residual stress and surface roughness in machining of Inconel 718 are so needed. Intelligent techniques based on the predictive and optimization models can be used efficiently for this purpose. In this study, the optimal machining parameters including cutting speed, depth of cut, and feed rate were accessed by intelligent systems to evaluate the state of residual stress and surface roughness in finish turning of Inconel 718. The results of experiments and analyses indicated that implemented techniques in this work provided a robust framework for improving surface integrity in machining of Inconel 718 alloy. It was shown that cutting speed has more effect on surface integrity than other investigated parameters. Also, depth of cut and feed rate were found in the moderate range to obtain satisfactory state of tensile residual stress and surface roughness.  相似文献   

20.
In this paper, the effect of feed rate, voltage, and flow rate of electrolyte on some performance parameters such as surface roughness, material removal rate, and over-cut of SAE-XEV-F valve-steel during electrochemical drilling in NaCl and NaNo3 electrolytic solutions have been studied using the main effect plot, the interaction plot and the ANOVA analysis. In continuation, in this case which the training dataset was small, an investigation has been done on the capability of the optimum presented regression analysis (RA), artificial neural network (ANN), and co-active neuro-fuzzy inference system (CANFIS) to predict the surface roughness, material removal rate and over-cut. The predicted parameters by the employed models have been compared with the experimental data. The comparison of results indicated that in electrochemical drilling using different electrolytic solutions, CANFIS gives the best results to predict the surface roughness and over-cut as well, while ANN is the best for predicting the material removal rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号