首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Alternate substrates for molecular beam epitaxy growth of HgCdTe including Si, Ge, and GaAs have been under development for more than a decade. MBE growth of HgCdTe on GaAs substrates was pioneered by Teledyne Imaging Sensors (TIS) in the 1980s. However, recent improvements in the layer crystal quality including improvements in both the CdTe buffer layer and the HgCdTe layer growth have resulted in GaAs emerging as a strong candidate for replacement of bulk CdZnTe substrates for certain infrared imaging applications. In this paper the current state of the art in CdTe and HgCdTe MBE growth on (211)B GaAs and (211) Si at TIS is reviewed. Recent improvements in the CdTe buffer layer quality (double crystal rocking curve full-width at half-maximum?≈?30?arcsec) with HgCdTe dislocation densities of ≤106?cm?2 are discussed and comparisons are made with historical HgCdTe on bulk CdZnTe and alternate substrate data at TIS. Material properties including the HgCdTe majority carrier mobility and dislocation density are presented as a function of the CdTe buffer layer quality.  相似文献   

2.
High-quality, single-crystal epitaxial films of CdTe(112)B and HgCdTe(112)B have been grown directly on Si(112) substrates without the need for GaAs interfacial layers. The CdTe and HgCdTe films have been characterized with optical microscopy, x-ray diffraction, wet chemical defect etching, and secondary ion mass spectrometry. HgCdTe/Si infrared detectors have also been fabricated and tested. The CdTe(112)B films are highly specular, twin-free, and have x-ray rocking curves as narrow as 72 arc-sec and near-surface etch pit density (EPD) of 2 × 106 cm−2 for 8 μm thick films. HgCdTe(112)B films deposited on Si substrates have x-ray rocking curve FWHM as low as 76 arc-sec and EPD of 3-22 × 106 cm−2. These MBE-grown epitaxial structures have been used to fabricate the first high-performance HgCdTe IR detectors grown directly on Si without use of an intermediate GaAs buffer layer. HgCdTe/Si infrared detectors have been fabricated with 40% quantum efficiency and R0A = 1.64 × 104 Ωm2 (0 FOV) for devices with 7.8 μm cutoff wavelength at 78Kto demonstrate the capability of MBE for growth of large-area HgCdTe arrays on Si.  相似文献   

3.
The use of silicon as a substrate alternative to bulk CdZnTe for epitaxial growth of HgCdTe for infrared (IR) detector applications is attractive because of potential cost savings as a result of the large available sizes and the relatively low cost of silicon substrates. However, the potential benefits of silicon as a substrate have been difficult to realize because of the technical challenges of growing low defect density HgCdTe on silicon where the lattice mismatch is ∼19%. This is especially true for LWIR HgCdTe detectors where the performance can be limited by the high (∼5×106 cm−2) dislocation density typically found in HgCdTe grown on silicon. We have fabricated a series of long wavelength infrared (LWIR) HgCdTe diodes and several LWIR focal plane arrays (FPAs) with HgCdTe grown on silicon substrates using MBE grown CdTe and CdSeTe buffer layers. The detector arrays were fabricated using Rockwell Scientific’s planar diode architecture. The diode and FPA and results at 78 K will be discussed in terms of the high dislocation density (∼5×106 cm2) typically measured when HgCdTe is grown on silicon substrates.  相似文献   

4.
A microstructural study of HgCdTe/CdTe/GaAs(211)B and CdTe/GaAs(211)B heterostructures grown using molecular beam epitaxy (MBE) was carried out using transmission electron microscopy and small-probe microanalysis. High-quality MBE-grown CdTe on GaAs(211)B substrates was demonstrated to be a viable composite substrate platform for HgCdTe growth. In addition, analysis of interfacial misfit dislocations and residual strain showed that the CdTe/GaAs interface was fully relaxed except in localized regions where GaAs surface polishing had caused small pits. In the case of HgCdTe/CdTe/GaAs(211)B, the use of thin HgTe buffer layers between HgCdTe and CdTe for improving the HgCdTe crystal quality was also investigated.  相似文献   

5.
In the past several years, we have made significant progress in the growth of CdTe buffer layers on Si wafers using molecular beam epitaxy (MBE) as well as the growth of HgCdTe onto this substrate as an alternative to the growth of HgCdTe on bulk CdZnTe wafers. These developments have focused primarily on mid-wavelength infrared (MWIR) HgCdTe and have led to successful demonstrations of high-performance 1024×1024 focal plane arrays (FPAs) using Rockwell Scientific’s double-layer planar heterostructure (DLPH) architecture. We are currently attempting to extend the HgCdTe-on-Si technology to the long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) regimes. This is made difficult because the large lattice-parameter mismatch between Si and CdTe/HgCdTe results in a high density of threading dislocations (typically, >5E6 cm−2), and these dislocations act as conductive pathways for tunneling currents that reduce the RoA and increase the dark current of the diodes. To assess the current state of the LWIR art, we fabricated a set of test diodes from LWIR HgCdTe grown on Si. Silicon wafers with either CdTe or CdSeTe buffer layers were used. Test results at both 78 K and 40 K are presented and discussed in terms of threading dislocation density. Diode characteristics are compared with LWIR HgCdTe grown on bulk CdZnTe.  相似文献   

6.
The organometallic vapor phase epitaxy of HgCdTe onto (100)2°-(110) GaAs substrates is described in this paper. A buffer layer of CdTe has been grown prior to the growth of HgCdTe, to take up the large lattice mismatch with the GaAs. Considerations for the thickness of this buffer layer are outlined, and it is shown by quantitative Secondary Ion Mass Spectroscopy that there is negligible diffusion of gallium from the GaAs substrate for the growth conditions described. Hall effect measurements give mobilities comparable to those reported for bulk grown crystals. An extrinsicn-type carrier concentration of 2 × 1016/cm3 is obtained, and is mainly due to residual impurities in the starting chemicals. The alloy composition has been determined at 298 K by Fourier transform infrared transmission (FTIR) spectrometry; this is found to be extremely uniform over a 15 × 7 mm area, as evidenced by an overlapping of FTIR plots taken over this area. HgCdTe layers have been grown on buffer layers varying in thickness from 0.1 to 1.9μm. It is found that a buffer thickness of about 1.9μm or larger is required to obtain high quality HgCdTe, both in terms of the electrical characteristics (mobility and carrier concentration) and the infrared transmission curves (peak transmission).  相似文献   

7.
Direct epitaxial growth of high-quality 100lCdZnTe on 3 inch diameter vicinal {100}Si substrates has been achieved using molecular beam epitaxy (MBE); a ZnTe initial layer was used to maintain the {100} Si substrate orientation. The properties of these substrates and associated HgCdTe layers grown by liquid phase epitaxy (LPE) and subsequently processed long wavelength infrared (LWIR) detectors were compared directly with our related efforts using CdZnTe/ GaAs/Si substrates grown by metalorganic chemical vapor deposition (MOCVD). The MBE-grown CdZnTe layers are highly specular and have both excellent thickness and compositional uniformity. The x-ray full-width at half-maximum (FWHM) of the MBE-grown CdZnTe/Si increases with composition, which is a characteristic of CdZnTe grown by vapor phase epitaxy, and is essentially equivalent to our results obtained on CdZnTe/GaAs/Si. As we have previously observed, the x-ray FWHM of LPE-grown HgCdTe decreases, particularly for CdZnTe compositions near the lattice matching condition to HgCdTe; so far the best value we have achieved is 54 arc-s. Using these MBE-grown substrates, we have fabricated the first high-performance LWIR HgCdTe detectors and 256 x 256 arrays using substrates consisting of CdZnTe grown directly on Si without the use of an intermediate GaAs buffer layer. We find first that there is no significant difference between arrays fabricated on either CdZnTe/Si or CdZnTe/GaAs/Si and second that the results on these Si-based substrates are comparable with results on bulk CdZnTe substrates at 78K. Further improvements in detector performance on Si-based substrates require a decrease in the dislocation density.  相似文献   

8.
分子束外延碲镉汞技术是制备第三代红外焦平面探测器的重要手段,基于异质衬底的碲镉汞材料具有尺寸大、成本低、与常规半导体设备兼容等优点,是目前低成本高性能红外探测器发展中的研究重点。对异质衬底上碲镉汞薄膜位错密度随厚度的变化规律进行了建模计算,结果显示ρ~1/h 模型与实验结果吻合度好,异质衬底上原生碲镉汞薄膜受位错反应半径制约,其位错密度无法降低至 5×106cm-2以下,难以满足长波、甚长波器件的应用需求。为了有效降低异质外延的碲镉汞材料位错密度,近年来出现了循环退火、位错阻挡和台面位错吸除等位错抑制技术,本文介绍了各技术的原理及进展,分析了后续发展趋势及重点。循环退火和位错阻挡技术突破难度大,发展潜力小,难以将碲镉汞位错密度控制在 5×105cm-2以内。台面位错吸除技术目前已经显示出了巨大的发展潜力和价值,后续与芯片工艺融合后,有望大幅促进低成本长波、中长波、甚长波器件的发展。  相似文献   

9.
Reduction of threading dislocation density is critical for improving the performance of HgCdTe detectors on lattice-mismatched alternative substrates such as Si. CdTe buffer layers grown by molecular beam epitaxy (MBE), with thicknesses on the order of 8 μm to 12 μm, have helped reduce dislocation densities in HgCdTe layers. In this study, the reduction of threading dislocation densities in CdTe buffer layers grown on locally thinned Si substrates was examined. A novel Si back-thinning technique was developed that maintained an epiready front surface and achieved Si thicknesses as low as 1.9 μm. Threading dislocation densities, acquired by defect decoration techniques, were reduced by as much as 60% for CdTe buffer layers grown on these thinned regions when compared with unthinned regions. However, this reduction is inconsistent with prior notions that threading dislocation propagation is dominated by image forces. Instead, the thickness gradient of thinned Si may play a larger role.  相似文献   

10.
Inductively coupled plasma (ICP) using hydrogen-based gas chemistry has been developed to meet requirements for deep HgCdTe mesa etching and shallow CdTe passivation etching in large format HgCdTe infrared focal plane array (FPA) fabrication. Large format 2048×2048, 20-μm unit-cell short wavelength infrared (SWIR) and 2560×512, 25-μm unit-cell midwavelength infrared (MWIR) double-layer heterojunction (DLHJ) p-on-n HgCdTe FPAs fabricated using ICP processing exhibit >99% pixel operability. The HgCdTe FPAs are grown by molecular beam epitaxy (MBE) on Si substrates with suitable buffer layers. Midwavelength infrared detectors fabricated from 4-in. MBE-grown HgCdTe/Si substrates using ICP for mesa delineation and CdTe passivation etching demonstrate measured spectral characteristics, RoA product, and quantum efficiency comparable to detectors fabricated using wet chemical processes. Mechanical samples prepared to examine physical characteristics of ICP reveal plasma with high energy and low ion angle distribution, which is necessary for fine definition, high-aspect ratio mesa etching with accurate replication of photolithographic mask dimensions.  相似文献   

11.
李震  王亚妮  王丛  高达  周朋  刘铭 《激光与红外》2020,50(6):643-650
主要介绍了几种用MBE技术生长HgCdTe/CdTe的Si衬底的替代性衬底材料的基本参数,以及不同材料的最新生长过程及结果,和对它们的生长结果的比较分析,以此来选择较为适合替代Si衬底来生长HgCdTe/CdTe的衬底。本文通过一系列的对比,得出目前最有发展前景的替代衬底是GaSb衬底,是未来发展的方向。  相似文献   

12.
Silicon-based substrates for the epitaxy of HgCdTe are an attractive low-cost choice for monolithic integration of infrared detectors with mature Si technology and high yield. However, progress in heteroepitaxy of CdTe/Si (for subsequent growth of HgCdTe) is limited by the high lattice and thermal mismatch, which creates strain at the heterointerface that results in a high density of dislocations. Previously we have reported on theoretical modeling of strain partitioning between CdTe and Si on nanopatterned silicon on insulator (SOI) substrates. In this paper, we present an experimental study of CdTe epitaxy on nanopatterned (SOI). SOI (100) substrates were patterned with interferometric lithography and reactive ion etching to form a two-dimensional array of silicon pillars with ~250 nm diameter and 1 μm pitch. MBE was used to grow CdTe selectively on the silicon nanopillars. Selective growth of CdTe was confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Coalescence of CdTe on the silicon nanoislands has been observed from the SEM characterization. Selective growth was achieved with a two-step growth process involving desorption of the nucleation layer followed by regrowth of CdTe at a rate of 0.2 Å s?1. Strain measurements by Raman spectroscopy show a comparable Raman shift (2.7 ± 2 cm?1 from the bulk value of 170 cm?1) in CdTe grown on nanopatterned SOI and planar silicon (Raman shift of 4.4 ± 2 cm?1), indicating similar strain on the nanopatterned substrates.  相似文献   

13.
采用分子束外延方法,在GaAs(111)B衬底上,生长CdTe薄膜,以求研制出用于液相外延生长碲镉汞(HgCdTe)薄膜的CdTe/GaAs(111)B复合衬底.通过理论分析和实验探索,优化了生长温度和Te/Cd束流比等重要生长参数,获得了质量较好的CdTe薄膜,再通过循环热处理,使CdTe/GaAs(111)B复合衬底的质量得到进一步的提高,X-射线回摆曲线半峰宽(FWHM)有明显的降低.为LPE-HgCdTe薄膜的生长打下了较好基础.  相似文献   

14.
CdTe是GaAs衬底上分子束外延(MBE)HgCdTe薄膜时的缓冲层,引入缓冲层的目的是减小失配位错,CdTe缓冲层的生长直接影响到后续HgCdTe薄膜的制备质量,然而目前现有文献鲜有报道CdTe缓冲层的最佳厚度.采用X射线双晶衍射、位错腐蚀坑密度(EPD)、FT-IR和椭圆偏振光谱的方法,从CdTe缓冲层厚度对位错密度的影响入手,分析并确定了理想的CdTe缓冲层厚度.  相似文献   

15.
The results of wafer fusion between GaAs and InP followed by transfer of an InGaAs film from the InP to GaAs substrate are presented in this paper. This technique of film transfer allowed the subsequent growth of epitaxial materials with approximately 7% lattice mismatch. Type-II InAs/GaInSb superlattices photodetectors of different designs have been grown by molecular beam epitaxy (MBE) on the alternative InGaAs/GaAs substrate and on standard GaSb substrates. Comparison between photodetectors grown on the two different substrates with nearly identical superlattice periods showed a shift in the cut-off wavelength. The superlattices grown on the alternative substrates were found to have uniform layers, with broader x-ray linewidths than superlattices grown on GaSb substrates.  相似文献   

16.
Epitaxial growth of (211)B CdTe/HgCdTe has been achieved on two inch germanium (Ge) by molecular beam epitaxy (MBE). Germanium was chosen as an alternative substrate to circumvent the weaknesses of CdZnTe wafers. The ease of surface preparation makes Ge an attractive candidate among many other alternative substrates. Best MBE CdTe growth results were obtained on (211) Ge surfaces which were exposed to arsenic and zinc fluxes prior to the MBE growth. This surface preparation enabled CdTe growth with B-face crystallographic polarity necessary for the HgCdTe growth. This process was reproducible, and produced a smooth and mirror-like surface morphology. The best value of the {422} x-ray double diffraction full width at half maximum measured from the HgCdTe layer was 68 arc-s. We present the 486 point maps of FWHM statistical values obtained from CdTe/Ge and HgCdTe/CdTe/Ge. High resolution microscopy electron transmission and secondary ion mass spectroscopy characterization results are also presented in this paper. High-performance middle wavelength infrared HgCdTe 32-element photodiode linear arrays, using the standard LETI/LIR planar n-on-p ion implanted technology, were fabricated on CdTe/Ge substrates. At 78K, photodiodes exhibited very high R0A figure of merit higher than 106 Ωcm−2 for a cutoff wavelength of 4.8 μm. Excess low frequency noise was not observed below 150K.  相似文献   

17.
We review the rapid progress that has been made during the past three years in the heteroepitaxial growth of HgCdTe infrared detector device structures on Si substrates by molecular-beam epitaxy. The evolution of this technology has enabled the fabrication of high performance, large-area HgCdTe infrared focal-plane arrays on Si substrates. A key element of this heteroepitaxial approach has been development of high quality CdTe buffer layers deposited on Si(112) substrates. We review the solutions developed by several groups to address the difficulties associated with the CdTe/Si(112) heteroepitaxial system, including control of crystallographic orientation and minimization of defects such as twins and threading dislocations. The material quality of HgCdTe/Si and the performance of HgCdTe detector structures grown on CdTe/Si(112) composite substrates is reviewed. Finally, we discuss some of the challenges related to composition uniformity and defect generation encountered with scaling the MBE growth process for HgCdTe to large-area Si substrates.  相似文献   

18.
The development of HgCdTe detectors requires high sensitivity, small pixel size, low defect density, long-term thermal-cycling reliability, and large-area substrates. CdTe bulk substrates were initially used for epitaxial growth of HgCdTe films. However, CdTe has a lattice mismatch with long-wavelength infrared (LWIR) and middle-wavelength infrared (MWIR) HgCdTe that results in detrimental dislocation densities above mid-106 cm?2. This work explores the use of CdTe/Si as a possible substrate for HgCdTe detectors. Although there is a 19% lattice mismatch between CdTe and Si, the nanoheteroepitaxy (NHE) technique makes it possible to grow CdTe on Si substrates with fewer defects at the CdTe/Si interface. In this work, Si(100) was patterned using photolithography and dry etching to create 500-nm to 1-μm pillars. CdTe was selectively deposited on the pillar surfaces using the close-spaced sublimation (CSS) technique. Scanning electron microscopy (SEM) was used to characterize the CdTe selective growth and grain morphology, and transmission electron microscopy (TEM) was used to analyze the structure and quality of the grains. CdTe selectivity was achieved for most of the substrate and source temperatures used in this study. The ability to selectively deposit CdTe on patterned Si(100) substrates without the use of a mask or seed layer has not been observed before using the CSS technique. The results from this study confirm that CSS has the potential to be an effective and low-cost technique for selective nanoheteroepitaxial growth of CdTe films on Si(100) substrates for infrared detector applications.  相似文献   

19.
研究了利用GaAs作为衬底的HgCdTe MBE薄膜的表面缺陷,发现其中一类缺陷与Hg源中杂质有关。采用SEM对这类缺陷进行正面和横截面的观察,并采用EDX对其正面和横截面进行成分分析。并设计了两个实验:其一,在CdTe/GaAs衬底上,低温下用Hg源照射20min,再在其上继续高温生长CdTe;其二,在CdTe/GaAs衬底上,一直用Hg源照射下高温生长CdTe。两个实验后CdTe表面都出现与HgCdTe表面相比在形状和分布上类似的表面缺陷,采用光学显微镜和SEM对CdTe表面缺陷进行了观察,通过CdTe表面缺陷和HgCdTe表面缺陷的比较,我们证实了这类表面缺陷的成核起源于Hg源中杂质。  相似文献   

20.
Results of first-principles calculations and experiments focusing on molecular beam epitaxy (MBE) growth of HgCdTe on the alternative substrates of GaAs and Si are described. The As passivation on (2 × 1) reconstructed (211) Si and its effects on the surface polarity of ZnTe or CdTe were clarified by examining the bonding configurations of As. The quality of HgCdTe grown on Si was confirmed to be similar to that grown on GaAs. Typical surface defects in HgCdTe and CdTe were classified. Good results for uniformities of full width at half maximum (FWHM) values of x-ray rocking curves, surface defects, and x values of Hg1−x Cd x Te were obtained by refining the demanding parameters and possible tradeoffs. The sticking coefficient of As4 for MBE HgCdTe was determined. The effects of Hg-assisted annealing for As activation were investigated experimentally and theoretically by examining the difference of the formation energy of AsHg and AsTe. Results of focal-plane arrays (FPAs) fabricated with HgCdTe grown on Si and on GaAs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号