共查询到20条相似文献,搜索用时 0 毫秒
1.
为实现磷石膏、磷渣固废材料的再生利用,提高工业固废的利用率,以磷石膏、磷渣作为主要原料,采用水玻璃、水泥熟料和磷石膏共同激发磷渣活性制备磷石膏—磷渣基复合胶凝材料。分别探讨磷石膏掺量、水玻璃掺量和磷渣粉磨制度对磷石膏—磷渣基复合胶凝材料强度的影响;并运用SEM、XRD分析磷石膏—磷渣基胶凝材料硬化体的微观结构及组成形貌。结果表明:磷石膏掺量低于50%时,复合胶凝材料各龄期强度与磷石膏掺量成反比;当m(磷石膏)∶m(磷渣)∶m(熟料)=20∶72∶8,水玻璃掺量为1.5%时,胶凝材料28 d抗压、抗折强度均达到最大值,分别为43、6.3 MPa;较单独粉磨磷渣与水泥熟料而言,混合粉磨制度会产生“微介质效应”,有利于提高复合胶凝材料强度;复合胶凝材料主要水化产物为C—S—H凝胶与钙矾石,钙矾石与未溶解的磷石膏作为骨架被生成的C—S—H凝胶包裹、充填、交织在一起,形成致密结构;复合胶凝材料用于替代水泥作为矿区充填材料时推荐磷石膏掺量为20%~40%。 相似文献
2.
本文针对性地探讨了碱激发剂掺量对尾矿-冶炼渣充填复合胶凝材料强度的影响。在强度试验的基础上,通过扫描电子显微镜、X射线衍射、红外光谱、X射线光电子能谱等一系列测试手段分析了在不同碱激发剂掺量下的材料结构和元素化学结合能变化,从微观上阐释了材料强度变化的原因。研究结果表明:添加碱激发剂有利于提高复合胶凝材料强度,碱激发剂的最佳掺量为3%。 相似文献
3.
4.
以工业废渣镍渣和钢渣为主要原料制备碱激发胶凝材料。研究钢渣掺量对镍渣碱激发胶凝材料抗压强度的影响,结合X射线衍射(XRD)和扫描电镜(SEM)等测试方法,对碱激发反应产物的微观性能进行分析。结果表明,随着钢渣掺量的增大,镍渣碱激发胶凝材料的抗压强度逐渐增大。钢渣掺量为50%时,50℃养护7 d的风冷镍渣碱激发胶凝材料和水淬镍渣碱激发胶凝材料的抗压强度分别较未掺钢渣试样提高279.2%和73.6%。掺入钢渣使得体系碱度增大,有效促进了镍渣碱激发反应过程的进行;反应产物相互填充,体系结构的致密性改善,有利于提高胶凝材料抗压强度。 相似文献
5.
6.
以废渣磷石膏作为掺合料替代部分水泥、添加聚羧酸减水剂,制备了胶结材和混凝土。结果表明:掺入5%的磷石膏的水泥胶砂强度均满足P.O 42.5水泥的强度要求,掺入10%~15%的磷石膏的水泥胶砂强度能达到P.O 32.5水泥的强度要求,胶砂试块的凝结时间及安定性均合格;采用磷石膏替代小于等于25%的水泥、添加2.0%~2.3%的聚羧酸减水剂,可配制C30混凝土,其抗渗性能达到P12抗渗等级要求。对制备的不同龄期胶砂及混凝土试样进行XRD分析可知,磷石膏-水泥复合胶凝材料的水化产物主要是CS-H凝胶和钙矾石(AFt);磷石膏中的Ca SO4·2H2O可与Ca O、Al2O3反应,生成AFt,增加硬化浆体的强度。且磷石膏颗粒细小,能起到微集料作用,增加硬化浆体的致密性。 相似文献
7.
锂渣具有火山灰活性,可作为辅助性胶凝材料应用于水泥基材料中,但其较低的水化活 性导致材料的力学性能和耐久性能下降。 针对锂渣在复合胶凝材料中的低水化程度,本文采用 一种无机高分子聚合铝作为激发剂来提升锂渣的水化反应活性,通过测定材料的胶砂强度、化学 结合水量等宏观性能,并结合水化放热特性、水化产物矿物组成及背散射显微形貌等微观表征, 分析了聚合铝对锂渣-水泥复合胶凝材料水化特性的影响及作用机理。 结果表明:聚合铝的掺入 显著提高锂渣-水泥复合胶凝材料28d龄期的抗压强度和化学结合水含量,分别增长了26*8% 和5%;早期水化反应中,聚合铝的掺入加速了锂渣-水泥复合胶凝体系的矿物相溶解和晶体的生 长,增加了水化产物的成核总量,水化产物中出现了大量的钙矾石、水化铝酸钙、氢氧化钙及非晶 态水化凝胶;聚合铝的掺入促进了锂渣-水泥复合胶凝体系的水化和锂渣颗粒的溶解与侵蚀。 相似文献
8.
9.
以磷渣(PS)、高炉矿渣(BFS)、复合碱激发剂(复配钠盐(CN)+氢氧化钙(CH))制备的磷渣基胶凝材料作为砷钙渣(AL)固化剂,研究其固化量对固化过程中材料性能和微观结构的影响,采用X射线衍射仪、扫描电镜和傅里叶红外光谱仪对固化体进行表征。结果表明,PS、BFS、CH质量比为70∶20∶4,CN添加量固定为PS、BFS和CH总质量的2%,AL固化量(质量分数)分别为5%、10%时,磷渣基胶凝材料抗压强度分别达67 MPa和78 MPa,较无砷组(32 MPa)显著增强,且砷浸出质量浓度均低于1 mg/L。当AL固化量为40%时,固化体抗压强度为20MPa,砷浸出质量浓度为4.34 mg/L,低于GB 5085.3-2007《危险废物鉴别标准浸出毒性鉴别》的限制浓度5 mg/L,说明磷渣基胶凝材料对AL有较好的固化效果。表征分析结果表明,AL可改变磷渣基胶凝材料的水化产物,未添加AL时,材料水化产物主要为水化硅酸钙;添加AL后,主要水化产物为水化硅酸钙、水化铝硅酸钙、水化铝硅酸钠和钙矾石。AL经固化后,固化体中有Ca2As2O7<... 相似文献
10.
采用KAl(SO4)2·12H2O和Al2(SO4)3·18H2O为激发剂,研究硫酸盐激发剂对石膏复合胶凝材料(GCB)凝结时间、力学性能和耐水性的影响,用SEM和XRD分析硫酸盐在GCB中的作用及其影响机理。结果表明,GCB的主要水化产物是钙矾石和C-S-H凝胶,硫酸盐有利于钙矾石和C-S-H凝胶的生成。两种硫酸盐都能显著提高GCB的早期强度,改善其泌水和耐水性能;达到最佳掺量1%时,KAl(SO4)2·12H2O的激发效果更好,GCB试样7 d抗压强度为24.7 MPa,软化系数大于0.9。 相似文献
11.
通过控制不同粉磨时间,控制磨细钢渣的比表面积和颗粒度分布,研究了与磨细石英砂凝结时间对比,不同颗粒度分布的钢渣的活性指数,以及配制成复合胶凝材料中的凝结时间和抗压强度,并进行了卧辊磨大磨实验,结果表明:(1)钢渣使复合胶凝材料早期结构发育缓慢,随着钢渣比表面积的增大,其与水分的接触面积增大,导致复合胶凝材料的凝结时间显著的延长,其早期(1~3d)的结构发育缓慢;(2)卧辊磨与实验室结果差距较大,可能原因为卧辊磨配套选粉机钢渣粉粒度分布窄;(3)将钢渣粉的比表控制在300 m2/kg左右,有利于钢渣磨机的台时产量提高,降低钢渣粉的生产成本,增大钢渣粉在水泥中的掺量. 相似文献
12.
13.
通过优化粉煤灰掺量、激发剂种类以及水玻璃模数,研究了其对碱激发矿渣-粉煤灰胶凝材料(AACs)风化性能的影响。结果表明:风化作用会引起AACs表面孔隙率、最可几孔径增大。水玻璃激发纯矿渣AACs孔隙率最低为2.9%,其抗压强度在加速风化7 d后由126.9 MPa下降至62.2 MPa;增大粉煤灰替代率(0~60%),可以有效抑制风化。水玻璃模数介于1.0~1.4,最可几孔径控制在7.58 nm以内。以NaOH溶液为激发剂的AACs,总孔隙率高于30%,结构中多害孔体积增大,为Na+的快速浸出提供通道,试样表面形成较多的Na2CO3·7H2O风化产物,且风化前后抗压强度均低于20 MPa。 相似文献
14.
以废渣黄石膏10%、水泥90%、高效减水剂1.2%~2.0%为原料配制的胶结材胶砂,其抗压、抗折强度满足P.O42.5水泥的强度指标要求,其凝结时间及安定性合格;采用配比为黄石膏30%、水泥70%、高效减水剂1.2%~2.0%,可配制C30混凝土,其抗渗性能达到P12抗渗等级要求;对制备的不同龄期胶砂及混凝土试块进行XRD分析,结果表明:黄石膏-水泥复合胶凝材料的水化产物,主要是C-S-H凝胶、钙矾石及二水石膏。C-S-H凝胶、钙矾石及二水石膏相互胶结在一起,形成致密的硬化体,从而产生强度。 相似文献
15.
研究主要掺和料矿粉及水泥单掺和复掺对磷石膏复合胶凝材料力学性能及耐水性能的影响,并通过扫描电镜(SEM)、压汞法(MIP)探究影响机理。结果表明,水泥掺量为0~20%、矿粉掺量为0~40%时,水泥和矿粉的单掺对磷石膏抗压强度有负面影响,但可有效提升软化系数。水泥及矿粉复掺时,可显著提高磷石膏软化系数,使软化系数达到0.65以上;当水泥掺量为5.58%,矿粉掺量为20.00%时,磷石膏复合胶凝材料抗压强度达到最大值16.50 MPa;水胶比由0.6降低至0.3,可制备抗压强度为32.50 MPa,软化系数为0.87的高强耐水磷石膏复合胶凝材料。由SEM结果可知,水泥及矿粉的水化产物包覆在石膏晶体表面,可显著提升其耐水性;由MIP结果可知,矿粉与水泥复掺可增加小孔(3~50 nm)比例及孔弯曲度,大幅降低平均孔径,改善孔径分布,增加基体致密度,进而提升抗压强度。 相似文献
16.
17.
精炼钢渣(精炼渣)大量堆存污染环境,利用其开发矿山充填胶凝材料,不仅可以解决精炼渣大量堆存
造成的环境污染问题,而且可以降低矿山充填成本。 以精炼渣、矿渣、脱硫石膏为原材料制备三元无水泥矿山充填用
胶凝材料,研究了精炼渣掺量对充填试块力学性能的影响,通过 XRD、TG-DTG、IR、SEM 等表征手段研究了胶凝材料
的水化过程和水化机理。 结果表明:胶凝材料配比为精炼渣占 30%、矿渣占 46%和脱硫石膏占 24%时,充填试块 28 d
龄期抗压强度为 7. 35 MPa,是同条件下水泥充填试块的 1. 52 倍;精炼渣-矿渣-脱硫石膏胶凝材料的水化产物主要为
针棒状钙矾石和 C—S—H 凝胶,随着养护龄期的延长,水化产物不断生成,使得充填体形成具有致密结构的浆体,为
硬化浆体提供强度。 利用精炼渣协同矿渣和脱硫石膏制备矿山充填胶凝材料符合低碳无废发展、保护和改善环境、
提高固废利用率的要求,具有广阔的市场应用前景。 相似文献
18.
19.
为研究地聚物的弱碱性激发技术,以湖北某地的页岩提钒尾渣为原料,进行了地聚物碱激发研究。主要研究了不同偏高岭土掺量、激发剂模数和激发剂用量对地聚物抗压强度的影响。最终确定在m (提钒尾渣):m (偏高岭土)=9:1,弱碱性激发剂Na2SiO3的模数为3.0,Na2SiO3的掺量为14%的激发制度下,地聚物试样3 d的抗压强度即可达到27.55 MPa,极大地提高了地聚物的抗压性能。对不同模数的硅酸钠下制备的地聚物进行物相转变、化学键变化和微观形貌分析,发现在液体硅酸钠的作用下,页岩提钒尾渣中的石英被进一步溶解;溶解的无定形硅铝物质与液体硅酸钠中的硅酸根反应逐渐生成硅铝凝胶相;液体硅酸钠中的硅酸根起一个诱导作用,液体硅酸钠的模数越高,其硅酸根含量越高,与页岩提钒尾渣中的无定形硅铝物质反应也越迅速,从而生成更多的硅铝凝胶相,促进了地聚物抗压强度的提高,实现了地聚物的安全制备。 相似文献