首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Power conversion efficiency (PCE) and stability are two important properties of perovskite solar cells (PSCs). Particularly, defects in the perovskite films could cause the generation of trap states, thereby increasing the nonradiative recombination. To address this issue, suitable dopants can be incorporated to react with non-bonded atoms or surface dangling bonds to passivate the defects. Herein, we introduced TiI4 into CH3NH3PbI3 (MAPbI3) film and obtained a dense and uniform morphology with large crystal grains and low defect density. The champion cell based on 0.5% TiI4-doped MAPbI3 achieved a PCE as high as 20.55%, which is superior to those based on pristine MAPbI3 (17.64%). Moreover, the optimal solar cell showed remarkable stability without encapsulation. It retained 88.03% of its initial PCE after 300 h of storage in ambient. This work demonstrates TiI4 as a new and effective passivator for MAPbI3 film.  相似文献   

2.
In this article, the thermoelectric properties of a Bi‐doped CH3NH3PbI3 (MAPbI3) perovskite thin film are studied. Bi‐doped MAPbI3 thin film samples are fabricated, and it is found that Bi doping could greatly enhance the stability and thermoelectric properties of MAPbI3. The Bi dopant located at the grain boundaries to modify the carrier channel near grain boundaries, which is observed via scanning electron microscopy and atomic force microscopy, efficiently reduces ion migration and facilitates charge transport. In addition, the Bi dopant can also passivate the defects in bulk MAPbI3, increasing the polarization effect of MAPbI3 which is demonstrated by the capacitance‐frequency measurement, thus greatly enhancing the mobility of Bi‐doped MAPbI3. In addition, Bi‐doped MAPbI3 leads to grain size reduction; the small size effect not only effectively hinders the MAPbI3's crystal phase transition from the tetragonal phase to the cubic phase, but it could also make the structure of MAPbI3 more stable. Especially, the Seebeck voltage variation of Bi‐doped perovskite was less than that of the undoped one, meaning Bi doping would lead to a much more stable state in MAPbI3 thin films. The results show that Bi‐doped MAPbI3 is a promising approach to develop high stable thermoelectric and photovoltaic properties in organic–inorganic hybrid perovskite materials.  相似文献   

3.
It is highly desirable for all-inorganic perovskite solar cells (PVSCs) to have reduced nonideal interfacial charge recombination in order to improve the performance. Although the construction of a 2D capping layer on 3D perovskite is an effective way to suppress interfacial nonradiative recombination, it is difficult to apply it to all-inorganic perovskites because of the resistance of Cs+ cesium ions in cation exchange reactions. To alleviate this problem, a simple approach using an ultra-thin 2D perovskite to terminate CsPbI3 grain boundaries (GBs) without damaging the original 3D perovskite is developed. The 2D perovskite at the GBs not only enhances the charge-carrier extraction and transport but also effectively suppresses nonradiative recombination. In addition, because the 2D perovskite can prevent the moisture and oxygen from penetrating into the GBs and at the same time suppress the ion migration, the 2D terminated CsPbI3 films exhibit significantly improved stability against humidity. Moreover, the devices without encapsulation can retain ≈81% of its initial power conversion efficiency (PCE) after being stored at 40 ± 5% relative humidity for 84 h. The 2D-based champion device exhibits a high PCE of 18.82% with a high open-circuit voltage of 1.16 V.  相似文献   

4.
Even though perovskite based solar cells have been routinely fabricated with preheated perovskite solutions, currently the underlying mechanism of how the perovskite precursor solution temperature influences perovskite solar cells has not been studied yet. Therefore, we investigated the impacts of perovskite solution temperatures on charge carrier dynamics of perovskite film and perovskite solar cell performance that were quantitatively analyzed using steady-state photoluminescence (PL), time-resolved emission spectra (TRES), excitation-dependence of PL and current-voltage measurements. It is found that the perovskite solution temperature greatly influenced the morphologies, defect densities and states, and charge recombination dynamics of perovskite thin films. Particularly, steady-state and time-resoled PL measurements revealed that perovskite thin films prepared with the perovskite solution temperature around 70 °C produced lowest surface and bulk defect densities. In addition, it is found that the perovskite solution temperature around 70 °C led to exciton-like transitions while lower and higher solution temperatures led to defect-mediated recombination of perovskite thin films. Such recombination dynamics of perovskite films strongly influenced the light absorption and extraction efficiencies of photogenerated charge carriers which in turn influenced short-circuit current, fill factor, and open circuit voltage of perovskite solar cells. As a result, better photovoltaic performance of perovskite solar cells was observed when prepared with the precursor temperature around 70 °C.  相似文献   

5.
We report a new approach of improving the solar cells efficiency based on ultrathin perovskite films. We propose the addition of CuPc compound to perovskite active layer for enhanced charge generation and transfer process by charge transfer process between CuPc and perovskite. The performance of the devices with and without addition of CuPc was studied in respect to thickness of the active layer. The thickness was varied by the change of the spin coating speed in the range of 4000, 7000 and 10000 rpm, different concentration of CuPc also been studied. The process of charge carrier recombination, crystallinity and Raman characteristics of the obtained films was studied. The perovskite device with an active layer of MAPbI3 mixed with CuPc spin coated with the speed of 10000 rpm with thickness of about 150 nm demonstrated the efficiency of 12.7%. The ultrathin mixed perovskite film (10000 rpm perovskite film of 15% CuPc) based device presents 33% thickness and 85% efficiency of common pure perovskite device (4000 rpm pure perovskite film).  相似文献   

6.
Solvent engineering technique for planar heterojunction perovskite solar cells is an efficient way to achieve uniformly controlled grain morphology for perovskite films. In this report, diethyl ether solvent engineering technique was used for Methyl ammonium lead triiodide (CH3NH3PbI3) perovskite thin films for planar heterojunction solar cells which exhibited a PCE of 9.20%. Morphological improvements and enhanced grain sizes leads to enhanced absorption of CH3NH3PbI3. Moreover solar cells have showed an excellent environmental stability of more than 100 days. This increase in efficiency is due to improved film morphology of perovskite layer after solvent treatment which has been revealed under UV–Vis spectroscopy, SEM images, X-ray diffraction and impedance spectroscopy.  相似文献   

7.
Two-terminal, mechanically-stacked perovskite/silicon tandem solar cells offer a feasible way to achieve power conversion efficiencies (PCEs) of over 35%, provided that the state-of-the-art industrial silicon solar cells and perovskite solar cells (PSCs) are fully compatible with one another. Herein, two-terminal, mechanically-stacked perovskite/silicon tandem solar cells are developed by mechanically interconnecting semitransparent PSCs and TOPCon solar cells with a MXene interlayer. The semitransparent PSCs are made from wide-bandgap perovskite Cs0.15FA0.65MA0.20Pb(I0.80Br0.20)3 films. Furthermore, the co-additives KPF6 and CH3NH3Cl(MACl) are employed to reduce grain boundaries and intragranular defects in the perovskite, boosting the PCE of the semitransparent PSCs to a record-high value of 20.96% under reverse scan (RS) through a reduction in non-radiative recombination probability. These optimized semitransparent PSCs are then employed in MXene-interconnected two-terminal, mechanically-stacked tandem solar cells. The enhanced interfacial carrier transportation, with minimal influence on light transmission, imparted by the MXene flakes allows the tandem solar cells to achieve a stabilized PCE of 29.65%. The tandem cells also exhibit acceptable operational stability and are able to retain ≈93% and 92% of their initial PCEs after 120 min of continuous illumination or storage in ambient air for 1000 h, respectively.  相似文献   

8.
Metal halide perovskite single crystals are promising for diverse optoelectronic applications due to their outstanding properties. In comparison to the bulk, the crystal surface suffers from high defect density and is moisture sensitive; however, surface modification strategies of perovskite single crystals are relatively deficient. Herein, solar cells based on methylammonium lead triiodide (MAPbI3) thin single crystals are selected as a prototype to improve single-crystal perovskite devices by surface modification. The surface trap passivation and protection against moisture of MAPbI3 thin single crystals are achieved by one bifunctional molecule 3-mercaptopropyl(dimethoxy)methylsilane (MDMS). The sulfur atom of MDMS can coordinate with bare Pb2+ of MAPbI3 single crystals to reduce surface defect density and nonradiative recombination. As a result, the modified devices show a remarkable efficiency of 22.2%, which is the highest value for single-crystal MAPbI3 solar cells. Moreover, MDMS modification mitigates surface ion migration, leading to enhanced reverse-bias stability. Finally, the cross-link of silane molecules forms a protective layer on the crystal surface, which results in enhanced moisture stability of both materials and devices. This work provides an effective way for surface modification of perovskite single crystals, which is important for improving the performance of single-crystal perovskite solar cells, photodetectors, X-ray detectors, etc.  相似文献   

9.
The performance of perovskite solar cells (PSCs) is extremely dependent on morphology and crystallinity of perovskite film. One of the most effective methods to achieve high performance perovskite solar cells has been to introduce additives that serve as dopants, crystallization or passivation agents. Herein a facile strategy by introducing methylammonium chloride (MACl) and polar solvent N,N-Dimethylformamide (DMF) as co-additives in two-step sequential method is proposed to realize high quality perovskite film. It is demonstrated that DMF facilitates methylammonium iodide (MAI) penetrating easily into PbI2 layer to form highly crystalized perovskite film with uniform morphology which is essential to achieve high VOC. While MACl induces MAPbI3 to crystallize in a pure α-phase and suppress non-photovoltaic phase, which guarantees high FF. Pure α-phase perovskite film with uniform morphology can be achieved by adopting MACl and DMF together and the corresponding solar cell illustrates a power conversion efficiency (PCE) of 19.02% with substantially promoted durability. Moreover, A VOC as high as 1.181 V is succeeded for MAPbI3 based solar cell benefiting from the synergistic effect.  相似文献   

10.
The two‐step conversion process consisting of metal halide deposition followed by conversion to hybrid perovskite has been successfully applied toward producing high‐quality solar cells of the archetypal MAPbI3 hybrid perovskite, but the conversion of other halide perovskites, such as the lower bandgap FAPbI3, is more challenging and tends to be hampered by the formation of hexagonal nonperovskite polymorph of FAPbI3, requiring Cs addition and/or extensive thermal annealing. Here, an efficient room‐temperature conversion route of PbI2 into the α‐FAPbI3 perovskite phase without the use of cesium is demonstrated. Using in situ grazing incidence wide‐angle X‐ray scattering (GIWAXS) and quartz crystal microbalance with dissipation (QCM‐D), the conversion behaviors of the PbI2 precursor from its different states are compared. α‐FAPbI3 forms spontaneously and efficiently at room temperature from P2 (ordered solvated polymorphs with DMF) without hexagonal phase formation and leads to complete conversion after thermal annealing. The average power conversion efficiency (PCE) of the fabricated solar cells is greatly improved from 16.0(±0.32)% (conversion from annealed PbI2) to 17.23(±0.28)% (from solvated PbI2) with a champion device PCE > 18% due to reduction of carrier recombination rate. This work provides new design rules toward the room‐temperature phase transformation and processing of hybrid perovskite films based on FA+ cation without the need for Cs+ or mixed halide formulation.  相似文献   

11.
Composition engineering is a particularly simple and effective approach especially using mixed cations and halide anions to optimize the morphology, crystallinity, and light absorption of perovskite films. However, there are very few reports on the use of anion substitutions to develop uniform and highly crystalline perovskite films with large grain size and reduced defects. Here, the first report of employing tetrafluoroborate (BF4?) anion substitutions to improve the properties of (FA = formamidinium, MA = methylammonium (FAPbI3)0.83(MAPbBr3)0.17) perovskite films is demonstrated. The BF4? can be successfully incorporated into a mixed‐ion perovskite crystal frame, leading to lattice relaxation and a longer photoluminescence lifetime, higher recombination resistance, and 1–2 orders magnitude lower trap density in prepared perovskite films and derived solar cells. These advantages benefit the performance of perovskite solar cells (PVSCs), resulting in an improved power conversion efficiency (PCE) of 20.16% from 17.55% due to enhanced open‐circuit voltage (VOC) and fill factor. This is the highest PCE for BF4? anion substituted lead halide PVSCs reported to date. This work provides insight for further exploration of anion substitutions in perovskites to enhance the performance of PVSCs and other optoelectronic devices.  相似文献   

12.
After an overwhelmingly fast increase during the period from 2009 to 2016, the power conversion efficiency of hybrid perovskite solar cells levels at ≈22% during the past two years. Every small advance to theoretical limits of the photovoltaic metrics will significantly deepen the understanding of internal processes inside the perovskite solar cells. Here, by introducing chloroform as the antisolvent, the one‐step deposition method to fabricate methylammonium lead tri‐iodide (MAPbI3) perovskite films under ambient air condition is optimized. With MAPbI3 solar cells of a planar architecture, a record high Voc of 1.18 V is obtained under simulated AM1.5 sunlight. The achievement helps pure MAPbI3 to reestablish its potential as a model compound for research in hybrid perovskite solar cells. After systematic comparison on different electron transport layers (SnO2 and TiO2) and fluorine doped tin oxide (FTO) substrates of different roughness for photon trapping inside MAPbI3 solar cells, the remaining 0.14 V Voc loss is elucidated to be due to the poor luminescent property of the MAPbI3 films.  相似文献   

13.
碳电极具有成本低、印刷方便、可有效隔离水氧等优点,因此有望利用碳电极材料实现低成本、高稳定性的钙钛矿太阳电池。无空穴传输层的传统碳基钙钛矿太阳电池面临着空穴提取率低、电子逆向传输,钙钛矿和碳电极界面的载流子复合等问题。文章引入聚(3-己基噻吩)(P3HT)作为器件的空穴传输层,使碳基钙钛矿太阳电池ITO/SnO2/MAPbI3/P3HT/Carbon的光伏性能得到了显著改善:器件的光电转化效率从11.16% 提高到13.37%。在氮气环境下,连续光照1000h,太阳电池的光电转化效率可保持初始值的87%,而传统器件在光照500h后,其光电转化效率已下降至初始值的60%。  相似文献   

14.
1D perovskite materials are of significant interest to build a new class of nanostructures for electronic and optoelectronic applications. However, the study of colloidal perovskite nanowires (PNWs) lags far behind those of other established perovskite materials such as perovskite quantum dots and perovskite thin films. Herein, a dual-phase passivation strategy to synthesize all-inorganic PNWs with minimized surface defects is reported. The local phase transition from CsPbBr3 to CsPb2Br5 in PNWs increases the photoluminescence quantum yield, carrier lifetime, and water-resistivity, owing to the energetic and chemical passivation effect. In addition, these dual-phase PNWs are employed as an interfacial layer in perovskite solar cells (PSCs). The enhanced surface passivation results in an efficient carrier transfer in PSCs, which is a critical enabler to increase the power conversion efficiency (PCE) to 22.87%, while the device without PNWs exhibits a PCE of 20.74%. The proposed strategy provides a surface passivation platform in 1D perovskites, which can lead to the development of novel nanostructures for future optoelectronic devices.  相似文献   

15.
The newly developed Pb[N(CN)2]2 additives have been demonstrated for enhancing efficiency from 14.7% to 17.4% and from 15.5% to 18.2% for conventional (FTO/TiO2 as the substrate) and inverted (FTO/NiOx as the substrate) MAPbI3 perovskite solar cells (PVSCs), respectively. Different from many effective additives of PVSCs, Pb[N(CN)2]2 provides the first visual evidences (colors changing) of additives participating in the solution adduct of MAPbI3 precursors. Further experimental results reveal that the Pb[N(CN)2]2 additives slowdown the formation process of the MAPbI3 crystallite thin film, of which the grain size reaches up to 900 nm with 0.2 M concentration of Pb[N(CN)2]2 additives in the MAPbI3 precursor solutions (1 M), accordant with the optimal concentration of Pb[N(CN)2]2 additives in enhancing efficiency of MAPbI3 PVSCs. We understand the role of Pb[N(CN)2]2 additives in MAPbI3 PVSCs through color photos (of precursor adduct solution and the adduct solid isolated from solutions), infra-red (of adduct solid isolated from solution), UV–visible absorption, photoluminescence, static and time-dependent powder X-ray spectroscopies.  相似文献   

16.
The origin of performance enhancements in p‐i‐n perovskite solar cells (PSCs) when incorporating low concentrations of the bulky cation 1‐naphthylmethylamine (NMA) are discussed. A 0.25 vol % addition of NMA increases the open circuit voltage (Voc) of methylammonium lead iodide (MAPbI3) PSCs from 1.06 to 1.16 V and their power conversion efficiency (PCE) from 18.7% to 20.1%. X‐ray photoelectron spectroscopy and low energy ion scattering data show NMA is located at grain surfaces, not the bulk. Scanning electron microscopy shows combining NMA addition with solvent assisted annealing creates large grains that span the active layer. Steady state and transient photoluminescence data show NMA suppresses non‐radiative recombination resulting from charge trapping, consistent with passivation of grain surfaces. Increasing the NMA concentration reduces device short‐circuit current density and PCE, also suppressing photoluminescence quenching at charge transport layers. Both Voc and PCE enhancements are observed when bulky cations (phenyl(ethyl/methyl)ammonium) are incorporated, but not smaller cations (Cs/MA)—indicating size is a key parameter. Finally, it demonstrates that NMA also enhances mixed iodide/bromide wide bandgap PSCs (Voc of 1.22 V with a 1.68 eV bandgap). The results demonstrate a facile approach to maximizing Voc and provide insights into morphological control and charge carrier dynamics induced by bulky cations in PSCs.  相似文献   

17.
Halide double perovskites have gained significant attention, owing to their composition of low-toxicity elements, stability in air, and recent demonstrations of long charge-carrier lifetimes that can exceed 1 µs. In particular, Cs2AgBiBr6 is the subject of many investigations in photovoltaic devices. However, the efficiencies of solar cells based on this double perovskite are still far from the theoretical efficiency limit of the material. Here, the role of grain size on the optoelectronic properties of Cs2AgBiBr6 thin films is investigated. It is shown through cathodoluminescence measurements that grain boundaries are the dominant nonradiative recombination sites. It also demonstrates through field-effect transistor and temperature-dependent transient current measurements that grain boundaries act as the main channels for ion transport. Interestingly, a positive correlation between carrier mobility and temperature is found, which resembles the hopping mechanism often seen in organic semiconductors. These findings explain the discrepancy between the long diffusion lengths >1 µm found in Cs2AgBiBr6 single crystals versus the limited performance achieved in their thin film counterparts. This work shows that mitigating the impact of grain boundaries will be critical for these double perovskite thin films to reach the performance achievable based on their intrinsic single-crystal properties.  相似文献   

18.
Organolead trihalide perovskite films with a large grain size and excellent surface morphology are favored to good‐performance solar cells. However, interstitial and antisite defects related trap‐states are originated unavoidably on the surfaces of the perovskite films prepared by the solution deposition procedures. The development of post‐growth treatment of defective films is an attractive method to reduce the defects to form good‐quality perovskite layers. Herein, a post‐treatment tactic is developed to optimize the perovskite crystallization by treating the surface of the one‐step deposited CH3NH3PbI3 (MAPbI3) using formamidinium iodide (FAI). Charge carrier kinetics investigated via time‐resolved photoluminescent, open‐circuit photovoltage decay, and time‐resolved charge extraction indicate that FAI post‐treatment will boost the perovskite crystalline quality, and further result in the reduction of the defects or trap‐states in the perovskite films. The photovoltaic devices by FAI treatment show much improved performance in comparison to the controlled solar cell. As a result, a champion solar cell with the best power conversion efficiency of 20.25% is obtained due to a noticeable improvement in fill factor. This finding exhibits a simple procedure to passivate the perovskite layer via regulating the crystallization and decreasing defect density.  相似文献   

19.
In this work, alcohol‐vapor solvent annealing treatment on CH3NH3PbI3 thin films is reported, aiming to improve the crystal growth and increase the grain size of the CH3NH3PbI3 crystal, thus boosting the performance of perovskite photovoltaics. By selectively controlling the CH3NH3I precursor, larger‐grain size, higher crystallinity, and pinhole‐free CH3NH3PbI3 thin films are realized, which result in enhanced charge carrier diffusion length, decreased charge carrier recombination, and suppressed dark currents. As a result, over 43% enhanced efficiency along with high reproducibility and eliminated photocurrent hysteresis behavior are observed from perovskite hybrid solar cells (pero‐HSCs) where the CH3NH3PbI3 thin films are treated by methanol vapor as compared with that of pristine pero‐HSCs where the CH3NH3PbI3 thin films are without any alcohol vapor treatment. In addition, the dramatically restrained dark currents and raised photocurrents give rise to over ten times enhanced detectivities for perovskite hybrid photodetectors, reaching over 1013 cm Hz1/2 W?1 (Jones) from 375 to 800 nm. These results demonstrate that the method provides a simple and facile way to boost the device performance of perovskite photovoltaics.  相似文献   

20.
The control of film morphology is crucial in achieving high‐performance perovskite solar cells (PSCs). Herein, the crystals of the perovskite films are reconstructed by post‐treating the MAPbI3 devices with methylamine gas, yielding a homogeneous nucleation and crystallization of the perovskite in the triple mesoscopic inorganic layers structured PSCs. As a result, a uniform, compact, and crystalline perovskite layer is obtained after the methylamine gas post‐treatment, yielding high power conversion efficiency (PCE) of 15.26%, 128.8% higher than that of the device before processing. More importantly, this post‐treatment process allows the regeneration of the photodegraded PSCs via the crystal reconstruction and the PCE can recover to 91% of the initial value after two cycles of the photodegradation‐recovery process. This simple method allows for the regeneration of perovskite solar cells on site without reconstruction or replacing any components, thus prolonging the service life of the perovskite solar cells and distinguishing from any other photovoltaic devices in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号