首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced efficiency and reduced efficiency roll-off in phosphorescent organic light-emitting diodes (PhOLEDs) are realized by interposing a solution-processed gold nanoparticle (GNP)-based interlayer between the anode and the hole-injection layer. Transient photoluminescence measurements elucidate that a reduced lifetime of the triplet excitons was observed for samples having a GNP-interlayer as compared to a control sample without the GNP-interlayer. The decrease in the triplet exciton lifetime, caused by the coupling between the triplet excitons and the localized surface plasmons (LSPs) excited by the GNPs, enables reducing the triplet–triplet and triplet–polaron annihilation processes, thereby a reduced efficiency roll-off in PhOLEDs. The presence of a GNP-interlayer also acts as an optical out-coupling layer contributing to the efficiency enhancement and was demonstrated by the theoretical simulation.  相似文献   

2.
Efficient red, orange, green and blue monochrome phosphorescent organic light-emitting diodes (OLEDs) with simplified structure were fabricated based on ultrathin emissive layers. The maximum efficiencies of red, orange, green and blue OLEDs are 19.3 cd/A (17.3 lm/W), 45.7 cd/A (43.2 lm/W), 46.3 cd/A (41.6 lm/W) and 11.9 cd/A (9.2 lm/W). Moreover, efficient and color stable white OLEDs based on two complementary colors of orange/blue, three colors of red/orange/blue, and four colors of red/orange/green/blue were demonstrated. The two colors, three colors and four colors white OLEDs have maximum efficiencies of 30.9 cd/A (27.7 lm/W), 30.3 cd/A (27.2 lm/W) and 28.9 cd/A (26.0 lm/W), respectively. And we also discussed the emission mechanism of the designed monochrome and white devices.  相似文献   

3.
Conjugated copolymers are important materials for organic light-emitting diodes. Here, an investigation of the photophysical and charge-transporting properties of the prototypical poly(p-phenylene vinylene) based copolymer SuperYellow (SY) is reported. The study also investigated the effect of processing conditions by comparing the properties of spin-coated and solution-cast films. For both types of films, the results of time-resolved fluorescence and photoluminescence quantum yield measurements are similar. The high photoluminescence quantum yield of 60% and its independence of processing conditions shows the effectiveness of the bulky side groups in preventing concentration quenching of fluorescence. Time of flight measurements of charge mobility in both spin-coated and solution-cast films also showed similar results, with mobilities in the range 10?6–10?7 cm2/V s for both films. These results provide important information about a widely used copolymer and show that a good polymer light-emitting diode material can have low mobility.  相似文献   

4.
By using a single host for both blue and orange phosphorescent dopants, a simple and efficient white organic light emitting-diode is reported. The dual-emissive-layer white device achieves a peak external quantum efficiency of 16.9 ± 0.9% and power efficiency of 44.1 ± 2.3 lm/W without out-coupling enhancement. Analysis of the device working mechanism determines that the blue dopant molecules can form a bridge to facilitate electron transport into the adjacent orange emitting-layer. The orange emission originates from both the direct electron trapping by the orange dopant and incomplete blue–orange energy transfer mechanisms. The origin of the voltage-dependent color shift of the device is quantitatively determined according to the working mechanism. Possible solution to reducing the color-shift is also provided based on the calculation and analytical results.  相似文献   

5.
A composite emitter is constructed by doping a carrier-transporting material into a conventional emitter composing of only host and dopant. The transport of carriers from either hole- or electron-transporting layer into the emitter can be promoted through the carrier-transporting material, in particular, when a wide-band-gap host material is used. A blue phosphorescent OLED based on iridium(III)bis((4,6-difluorophenyl)-pyridinate-N,C2′)-picolinate (FIrpic) as dopant in the composite emitter achieved a power efficiency of 20 lm/W and a low driving voltage of 4.2 V at 1000 cd/m2, whose current efficiency at 20 mA/cm2 was 2.5 times better than that of device using the conventional emitter.  相似文献   

6.
The charge conduction properties of a series of iridium-based compounds for phosphorescent organic light-emitting diodes (OLEDs) have been investigated by thin-film transistor (TFT) technique. These compounds include four homoleptic compounds: Ir(ppy)3, Ir(piq)3, Ir(Tpa-py)3, Ir(Cz-py)3, and two heteroleptic compounds Ir(Cz-py)2(acac) and FIrpic. Ir(ppy)3, Ir(piq)3 and FIrpic are commercially available compounds, while Ir(Tpa-py)3, Ir(Cz-py)3 and Ir(Cz-py)2(acac) are specially designed to test their conductivities with respect to the commercial compounds. In neat films, with the exception of FIrpic, all Ir-compounds possess significant hole transporting capabilities, with hole mobilities in the range of about 5 × 10−6–2 × 10−5 cm2 V−1 s−1. FIrpic, however, is non-conducting as revealed by TFT measurements. We further investigate how Ir-compounds modify carrier transport as dopants when they are doped into a phosphorescent host material CBP. The commercial compounds are chosen for the investigation. Small amounts of Ir(ppy)3 and Ir(piq)3 (<10%) behave as hole traps when they are doped into CBP. The hole conduction of the doped CBP films can be reduced by as much as 4 orders of magnitude. Percolating conduction of Ir-compounds occurs when the doping concentrations of the Ir-compounds exceed 10%, and the hole mobilities gradually increase as their values reach those of the neat Ir films. In contrast to Ir(ppy)3 and Ir(piq)3, FIrpic does not participate in hole conduction when it is doped into CBP. The hole mobility decreases monotonically as the concentration of FIrpic increases due to the increase of the average charge hopping distance in CBP.  相似文献   

7.
A series of green phosphorescent organic light emitting diodes (OLED) were studied using I(V), admittance spectroscopy, and capacitance-versus-voltage, C(V), measurements. We found that both the logarithmic derivative of I(V) and C(V) spectra revealed two distinct peaks related to the build-up and consequent dissipation of charge on different interfaces of the device. The first peak is common for many types of OLEDs and is caused by the external built-in potential. The second peak is a feature attributed to the specific stacking sequence of the devices studied. We argue that the secondary charge build-up occurs at the interface between hole transport layer and emission layer due to (i) the strong mismatch of HOMO level of these layers and (ii) restricted direct injection of holes onto the phosphorescent dopant molecules. Consequent dissipation of the charge is caused by greatly-enhanced supply of electrons, which in turn is caused by exponential growth of electron mobility due to the Frankel-Poole effect. Our study shows that C(V), in conjunction with I(V), measurements are not only useful for model devices with two metal-organic interfaces, but can also characterize charge accumulation in complex, multi-interface OLEDs. We also observed a strong negative contribution to the capacitance at low frequency and high biases; the emergence of the negative capacitance correlates with the onset of light emission.  相似文献   

8.
A new series of highly efficient Ir(III) complexes, (DPQ)2Ir(pic-N-O), (F4PPQ)2Ir(pic-N-O), (FPQ)2Ir(pic-N-O), and (CPQ)2Ir(pic-N-O) were synthesized for phosphorescent organic light-emitting diodes (PhOLEDs), and their photophysical, electrochemical, and electroluminescent (EL) properties were investigated. The Ir(III) complexes, including picolinic acid N-oxide (pic-N-O) ancillary ligand, are comprised with the various main ligands such as 2,4-diphenylquinoline (DPQ), 4-phenyl-2-(2,3,4,5-tetrafluorophenyl)quinoline (F4PPQ), 2-(9,9-diethyl-9H-fluoren-2-yl)-4-phenylquinoline (FPQ) and 9-ethyl-3-(4-phenylquinolin-2-yl)-9H-carbazole. Remarkably, high performance PhOLEDs using a solution-processable (DPQ)2Ir(pic-N-O) doped CBP host emission layer were fabricated to give a high luminance efficiency (LE) of 26.9 cd/A, equivalent to an external quantum efficiency (EQE) of 14.2%.The calculated HOMO–LUMO energy gaps for (DPQ)2Ir(pic-N-O), (F4PPQ)2Ir(pic-N-O), (FPQ)2Ir(pic-N-O) and (CPQ)2Ir(pic-N-O) were in good agreement with the experimental results.  相似文献   

9.
We report on the spectral tunability of white light by localized surface plasmon (LSP) effect in a colour converting hybrid device made of CdSe/ZnS quantum dots (QDs) integrated on InGaN/GaN blue light-emitting diodes (LEDs). Silver (Ag) nanoparticles (NPs) are mixed with QDs for generating LSP effect. When the plasmon absorption of Ag NPs is synchronized to the QW emission at 448 nm, the NPs selectively absorb the blue light and subsequently enhance the QD emission. Using this energy transfer scheme, the (xy) chromaticity coordinates of the hybrid white LED was tuned from (0.32, 0.17) to (0.43, 0.26), and thereby generated warm white light emission with correlated colour temperature (CCT) around 1800 K. Moreover, a 47% enhancement in the external quantum efficiency (EQE) was realized.  相似文献   

10.
Three new iridium compounds, 4-F-FIrpic, 4-Cl-FIrpic and 4-Br-FIrpic, were designed and synthesized by introducing the F, Cl and Br atoms to the 4-position of pyridine ring in the frame of sky-blue emitter, FIrpic. Adding F atom stabilizes the HOMO level of FIrpic but keeps the LUMO level of FIrpic almost unchanged, which consequently broadens the HOMO–LUMO gap of FIrpic and finely tunes the emission to 465 nm of 4-F-FIrpic from 470 nm of FIrpic. In contrast, introducing of Cl and Br atoms simultaneously lowers the HOMO and LUMO levels of FIrpic, which brings about the squeeze of HOMO–LUMO gap in FIrpic and makes the emissions of 4-Cl-FIrpic and 4-Br-FIrpic red-shift to 475 and 479 nm, respectively. The phosphorescent organic light-emitting devices using the three iridium compounds as dopants were fabricated with the following configuration: ITO/MoO3/TAPC/TCTA:dopants/Tm/LiF/Al. The device based on 4-F-FIrpic showed a blue emission with the Commission Internationale de L’Eclairage coordinate of (0.15, 0.28), and revealed rather high efficiencies, with maximum current efficiency of 29 cd A−1, power efficiency of 29 lm W−1 and external quantum efficiency of 14.6%.  相似文献   

11.
The emission zone profile in an organic light-emitting diode was extracted by fitting the experimentally measured far-field angular electroluminescence spectrum of a purposely designed device. It is based on a thin 10 nm emission layer doped with the red emitting phosphor Ir(MDQ)2acac. We find strong indications for light emission originating from outside of the emission layer, even though the device has electron and hole blocking layers. These are commonly assumed to completely confine the charge carrier recombination and hence the light emission to the emission layer. Since the calculated internal spectrum of the emission matches the emitter photoluminescence spectrum well, diffusion of the emitter molecules outside of the emission layer is hypothesized.  相似文献   

12.
Electrochromism or electrochromic contrast in electropolymerized thin films of dioxythiophenes based conjugated polymers is known to be sensitive to the structure of monomer and the polymerizing conditions. However in our studies we found that it is also sensitive to the electrode surface wherein a significantly high electrochromic contrast is observed in the electropolymerized thin films of poly(3,4-ethylenedioxythiophene), PEDOT deposited on platinum (71%) as compared to that on indium tin oxide, ITO, coated glass surface (54%). This is attributed to the formation of more conjugated polymer on the metallic surfaces as confirmed by narrow and red shifted absorption peak for PEDOT on platinum compared to broad and blue shifted peak on ITO in the UV–vis absorption spectra. This difference in the electrochromic properties of electropolymerized PEDOT thin films on the two surfaces is investigated by studying their electrochemical growth using UV–vis absorption, Raman spectroscopy and atomic force microscopy techniques. These results suggest the deposition of more conjugated polymer in the initial stages of growth (≤3 mC/cm2) on both the substrates whereas it continues the same way into the intermediate stages (up to ∼15 mC/cm2) only on platinum, thereby, resulting in higher electrochromic contrast on platinum. The coloration efficiency of PEDOT thin film was also found to be improved on platinum (465 cm2/C) compared to that on ITO (230 cm2/C). Moreover, we observed that the EC contrast of electropolymerized PEDOT thin films on platinum was found to be insensitive to polymerizing solvent that is generally not the case when polymerized on ITO. The cyclic stability of PEDOT-Pt films are better compared to that of PEDOT-ITO which is attributed to the improved reversibility of these films with respect to potential switching.  相似文献   

13.
Solution-processed organic light-emitting diodes (S-OLEDs) are potential candidates for next-generation wearable electronics due to the simple processing capability, high scalability, and mechanical flexibility. As a demand for the high-resolution OLEDs is given rise to realize the natural images in the eyewear displays, developing efficient methods for producing solution-processed organic patterns has been vital to achieve the practical S-OLEDs. Despite considerable effort to develop the fine organic patterns, an incomplete understanding of the effect of the surface wetting nature on the precise pattern formation inevitably restricts the resolution of the S-OLEDs. Herein, we present the physical picture of forming solution-processed high-resolution organic patterns using wetting phenomena. For macroscale patterns larger than 50 μm, the surface energy difference between the wetting and dewetting regions are critical for governing the pattern fidelity. In contrast, the microscale patterns with a feature size lower than 10 μm are produced by the subtle interplay between the surface energy difference and wettability following the Cassie state of the substrate. High-resolution line patterns with a width of 5 μm of the S-OLED are fabricated by balancing the surface energy difference and wettability of the substrate. The patterned S-OLED exhibits a high-pattern fidelity and stable electro-optical performance without any detrimental effects.  相似文献   

14.
We report on the electrical properties of ZnO films and devices grown on different substrates by radio-frequency magnetron sputtering. The films grown on c-plane sapphire were annealed in the range 800–1,000°C. The electron concentration increased with annealing temperature reaching 1.4×1019 cm?3 for 1,000°C. Mobility also increased, however, reaching its maximum value 64.4 cm2/V · sec for 950°C anneal. High-performance Schottky diodes were fabricated on ZnO films grown on n-type 6H-SiC by depositing Au/Ni(300/300 Å). After annealing at 900°C, the leakage current (at ?5 V reverse bias) decreased from 2.2 × 10?7 A to ~5.0 × 10?8 A after annealing at 900°C, the forward current increased by a factor of 2, and the ideality factor decreased from 1.5 to 1.03. The ZnO films were also grown on p-type 6H-SiC, and n-ZnO/p-SiC heterostructure diodes were fabricated. The p-n diode performance increased dramatically after annealing at 950°C. The leakage current decreased from 2.0×10?4 A to 3.0×10?7 A at ?10 V reverse bias, and the forward current increased slightly from 2.7 mA to 3.9 mA at 7 V forward bias; the ideality factor of the annealed diode was estimated as 2.2, while that for the as-grown sample was considerably higher.  相似文献   

15.
用磷光材料Ir(ppy)3制备了高效率顶部发射绿色有机发光二极管(OLED),器件的结构为:ITO/Ag/NPB/Ir(ppy)3(5wt%):TPBI/TPBI/LiF/Al。研究发现与传统的无微腔结构器件相比顶部发射器件的性能有大幅度提高,其最大效率为18cd/A。通过使用F-P腔,器件的电致发光(EL)寿命由7.6μs降低为7.1μs,有效地缓解了效率随电流密度增大而下降的问题。顶部发射器件EL共振的主峰位于505nm处,发射光谱半峰宽(FWHM)窄化为23nm,色纯度为(x=0.122,y=0.671),发射光随探测角度变化较小。最后,分析了其瞬态光电性能变化原因。  相似文献   

16.
InAlN films of different thicknesses (150 nm, 250 nm, 380 nm, 750 nm and 1050 nm) were grown on Si (111) by means of reactive co-sputtering at 300 °C. Surface morphology results indicated an increase in the grains size and their spacing with increase of the film thickness. The surface of InAlN remained smooth with a slight variation in its RMS roughness from 1.29 nm to 6.62 nm by varying the film thickness. X-ray diffraction patterns exhibited InAlN diffraction peaks with preferred orientation along (002) plane in the thickness range 250 nm to 750 nm, however, the preferred orientation of the film was changed towards (101) plane at 1050 nm. An improvement in the crystallinity of InAlN was observed with increase of the film thickness. Electrical characterization revealed a decrease in the film's resistivity by increasing its thickness to 750 nm, however, the resistivity was found to increase at 1050 nm. The electron concentration indicated an increasing trend whereas changes in the electron mobility were found to be inconsistent with increase of the film thickness.  相似文献   

17.
Thin films of nickel phthalocyanine (NiPc) were prepared by thermal evaporation and the effects of annealing temperature on the structural and optical properties of the samples were studied using different analytical methods. Structural analysis showed that the grain size and crystallinity of NiPc films improved as annealing temperature increased from 25 to 150 °C. Also, maximum grain size (71.3 nm) was obtained at 150 °C annealing temperature. In addition, NiPc films annealed at 150 °C had a very smooth surface with an RMS roughness of 0.41 nm. Optical analysis indicated that band gap energy of films at different annealing temperatures varied in the range of 3.22–3.28 eV. Schottky diode solar cells with a structure of ITO/PEDOT:PSS/NiPc/Al were fabricated. Measurement of the dark current density–voltage (JV) characteristics of diodes showed that the current density of films annealed at 150 °C for a given bias was greater than that of other films. Furthermore, the films revealed the highest rectification ratio (23.1) and lowest barrier height (0.84 eV) demonstrating, respectively, 23% and 11% increase compared with those of the deposited NiPc films. Meanwhile, photoconversion behavior of films annealed at 150 °C under illumination showed the highest short circuit current density (0.070 mA/cm2) and open circuit voltage of (0.55 V).  相似文献   

18.
阳秀  黎威志  钟志有  蒋亚东 《半导体光电》2006,27(2):161-163,209
采用聚乙烯基咔唑(PVK)作为空穴传输层,8-羟基喹啉铝(Alq3)作为发光层,制备了结构为ITO/PVK/Alq3/Mg∶Ag/Al的有机发光二极管(OLED),通过测试器件的电流-电压-发光亮度特性,研究了空穴传输层厚度对OLED器件性能的影响,优化了器件功能层的厚度匹配.实验结果表明,OLED的光电性能与空穴传输层的厚度密切相关,空穴传输层厚度为15nm时,OLED器件具有最低的启亮电压,最高的发光亮度和最大的发光效率.  相似文献   

19.
Annealing is widely used in the processing of organic semiconductors, and can modify their film morphology and photophysical properties. A study of the effect of annealing on films made from a blue emitting bisfluorene-cored dendrimer is reported. Annealing causes a 15 nm blue-shift in the photoluminescence (PL) spectrum and an 11 nm blue-shift in the amplified spontaneous emission (ASE) spectrum. It causes the PL efficiency to decrease only slightly from 0.92 to 0.83. The radiative decay rate of 1.3 × 109 s?1, the ASE threshold of 1.5 × 1018 cm?3 and the singlet–singlet exciton annihilation rate of 5.5 × 10?10 cm3 s?1 are unaffected by annealing. The results indicate a scope for colour adjustment of dendrimer light-emitting diodes and lasers without affecting their efficiencies. Investigation by spectroscopic ellipsometry shows that on annealing, the films become anisotropic, with larger values of the refractive index and extinction coefficient observed for light polarised in the plane of the film than the corresponding out-of-plane values in the absorption region of the bisfluorene core. This anisotropy indicates a preferential in-plane orientation of bisfluorene cores upon annealing.  相似文献   

20.
Quantum-dot light-emitting diodes (QLEDs) are unarguably the most successful member of rapidly developing family of devices based on quantum dots (type II−VI group compounds). Herein, the electroluminescence properties and fabrication/characterization technologies of QLEDs are reviewed. Particular emphasis is devoted to the dynamic processes of charge carriers and the related characterization technology because QLEDs are electro-optic conversion devices whose performance is to a great extent determined by the carrier transport/distribution and exciton formation. The utility of spectroscopic technologies, including steady/transient electroluminescence and photoluminescence, electro-absorption spectrum, and differential absorption spectrum are explained. Additionally, displacement current measurement technology is also discussed due to its potential to characterize the trapped charges within the devices. The strategies to improve the device performance by interface modification and QD design are summarized and the corresponding physics and chemistry mechanisms are discussed. Finally, a summary and outlook are shown about the challenge faced by QLED, as well as possible pathway to enhancing the device performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号