首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidized graphitic carbon nitride (o-g-C3N4) and Evonik AEROXIDE® P25 TiO2 were compared for lab-scale photocatalytic H2 evolution from aqueous sacrificial biomass-derivatives, under simulated solar light. Experiments in aqueous starch using Pt or Cu–Ni as the co-catalysts indicated that H2 production is affected by co-catalyst type and loading, with the greatest hydrogen evolution rates (HER) up to 453 and 806 μmol g−1 h−1 using TiO2 coupled with 3 wt% Cu–Ni or 0.5 wt% Pt, respectively. Despite the lower surface area, o-g-C3N4 gave HERs up to 168 and 593 μmol g−1 h−1 coupled with 3 wt% Cu–Ni or 3 wt% Pt. From mono- and di-saccharide solutions, H2 evolution was in the range 504–1170 μmol g−1 h−1 for Pt/TiO2 and 339–912 μmol g−1 h−1 for Cu–Ni/TiO2, respectively; o-g-C3N4 was efficient as well, providing HERs of 90–610 μmol g−1 h−1. The semiconductors were tested in sugar-rich wastewaters obtaining HERs up to 286 μmol g−1 h−1. Although HERs were lower compared to Pt/TiO2, a cheap, eco-friendly and non-nanometric catalyst such as o-g-C3N4, coupled to non-noble metals, provided a more sustainable H2 evolution.  相似文献   

2.
Photocatalytic technology for hydrogen evolution from water splitting and pollutant degradation is one of the most sustainable methods. Here, the graphene/g–C3N4–Co composite materials have been prepared by one-pot calcination method. The results show that g-C3N4 grow on the surface of graphene and form a sandwich structure, meanwhile, the introduction of Co increases the active sites, which promotes the photocatalytic performance. The influences of graphene and Co content on photocatalytic activity were also studied by UV–visible spectrophotometry (DRS), photoluminescence spectroscopy (PL), photocurrent, degradation MB, and hydrogen production. The apparent reaction rate constant k of graphene/g–C3N4–Co (3%) is 0.946 h−1, which is 4.90 and 2.18 times faster than g-C3N4 and graphene/g-C3N4, respectively. And the hydrogen production rate of graphene/g–C3N4–Co (3%) (892.3 μmol h−1 g−1) is 3.53 and 1.61 times higher than g-C3N4 and graphene/g-C3N4, respectively.  相似文献   

3.
Hydrogen gas production potentials of acid-hydrolyzed and boiled ground wheat were compared in batch dark fermentations under mesophilic (37 °C) and thermophilic (55 °C) conditions. Heat-treated anaerobic sludge was used as the inoculum and the hydrolyzed ground wheat was supplemented by other nutrients. The highest cumulative hydrogen gas production (752 ml) was obtained from the acid-hydrolyzed ground wheat starch at 55 °C and the lowest (112 ml) was with the boiled wheat starch within 10 days. The highest rate of hydrogen gas formation (7.42 ml H2 h−1) was obtained with the acid-hydrolyzed and the lowest (1.12 ml H2 h−1) with the boiled wheat at 55 °C. The highest hydrogen gas yield (333 ml H2 g−1 total sugar or 2.40 mol H2 mol−1 glucose) and final total volatile fatty acid (TVFA) concentration (10.08 g L−1) were also obtained with the acid-hydrolyzed wheat under thermophilic conditions (55 °C). Dark fermentation of acid-hydrolyzed ground wheat under thermophilic conditions (55 °C) was proven to be more beneficial as compared to mesophilic or thermophilic fermentation of boiled (partially hydrolyzed) wheat starch.  相似文献   

4.
A novel CuSZnS1?xOx/g-C3N4 nanocomposites were prepared by a thermal decomposition process and a hydrothermal method. The effects of the Cu(NO3)2 dopant precursor concentration and weight ratio of g-C3N4/ZnS1?xOx on the morphology, crystalline properties, optical property, photocurrent were investigated by using the field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectra (DRS), photocurrent response, and hydrogen production tests. Decorating CuS improved the absorption of the heterostructured photocatalysts. H2 production rate was increased from 9200 to 10,900 μmol h?1 g?1 by incorporating CuS. By loading 5 wt% g-C3N4 on CuSZnS1?xOx, the maximal hydrogen production rate of the composite catalyst reached 12,200 μmol g?1h?1 under UV light irradiation. Introducing g-C3N4 helps to separate photogenerated electron–hole pairs. After being operated for 3 cycles, the recycled CuSZnS1?xOx/g-C3N4 photocatalyst retained 87% of its original activity.  相似文献   

5.
Solar water splitting by photocatalysis in the absence of sacrificial agent has been identified as a promising approach to produce green hydrogen. Increasing photocatalytic efficiency is the core issue in this process. Forming heterojunctions is one potential solution to improve photoactivity. Herein, we successfully synthesized several g-C3N4/BiFeO3 composites containing different mass ratio of g-C3N4 by an uncomplicated and cost-effective method. The composite samples exhibited remarkably enhanced photocatalytic performance compared with the bare BiFeO3 and g-C3N4. The highest hydrogen production rate obtained is ~ 160.75 μmol h−1.g-1 under UV irradiation and ~23.31 μmol h−1.g-1 under visible light irradiation. This enhanced photocatalytic activity is attributed to the synergistic effect of the junction and Z-scheme charge transfer mechanism between BiFeO3 and g-C3N4, which can effectively accelerate the separation of photogenerated electron-hole pairs and also capability of carrying out redox reaction.  相似文献   

6.
Fabricating 0D/2D heterojunctions is considered to be an efficient mean to improve the photocatalytic activity of g-C3N4, whereas their applications are usually restricted by complex preparation process. Here, the 0D/2D SnO2/g-C3N4 heterojunction photocatalyst is prepared by a simple one-step polymerization strategy, in which SnO2 nanodots in-situ grow on the surface of g-C3N4 nanosheets. It shows the outstanding photocatalytic H2 production activity relative to g-C3N4 under the visible light, which is due to the formation of 0D/2D heterojunction significantly contributing to the separation of photogenerated charge carriers. In particular, the H2 production rate over the optimal SnO2/g–C3N4–1 sample is 1389.2 μmol h−1 g−1, which is 6.06 times higher than that of g-C3N4 (230.8 μmol h−1 g−1). Meanwhile, the AQE value of H2 production over the SnO2/g–C3N4–1 sample reaches up to a maximum of 4.5% at 420 nm. This work develops a simple approach to design and fabricate g–C3N4–based 0D/2D heterojunctions for the high-efficiency H2 production from water splitting.  相似文献   

7.
Photocatalytic hydrogen production holds great promise for alleviating the energy shortage through effective photo-to-chemical conversion, and the development of visible-light responsive, low-cost and sustainable photocatalysts remains key priority. In this study, carbon quantum dots/covalent triazine-based framework (CQDs/CTF) non-metallic photocatalyst was constructed through a simple impregnation method for photocatalytic H2 evolution. Upon 0.24% CQDs loading, a three-fold enhanced H2 production activity of 102 μmol?g?1?h?1 was achieved compared with pristine CTF-1 (34.5 μmol?g?1?h?1). Photoluminescence and photoelectrochemical study revealed carbon quantum dots served as the electron libraries, which was conducive to facilitate electron capture and promote the separation of photoinduced electron-hole pairs in CTF-1. Notably, the excitation-independent up-conversion fluorescent characteristics of CQDs endowed the catalysts broadened visible-light response range and higher solar energy utilization efficiency. This study deepens insights into the mechanism of CQDs modification and paves a trustworthy strategy for harvesting visible-light-driven metal-free photocatalyst with highly-active and robust performance.  相似文献   

8.
The practical applications of graphitic carbon nitride (g-C3N4) for photocatalytic hydrogen evolution is strictly hindered by the low surface area, poor light harvesting capability and detrimental recombination of photoexcited charge carriers. Herein, using melamine as precursor and metal hydride (i.e., CaH2) as active agent, we facilely incorporate various types of defects (i.e., nitrogen (N) vacancies (VN), cyano groups (CN) and surface absorbed oxygen species(Oabs)) into g-C3N4 within a single step. The as-prepared material (denoted as MM-H) exhibits narrowed bandgap, promoted photoexcited electron-hole separation rate and facilitated charge transfer kinetics with enlarged BET surface area and massive porosity. As a result, a prominently enhanced photocatalytic H2 productivity efficiency (1305.9 μmol h−1g−1) is shown on MM-H. This performance is better than that of g-C3N4 with CaH2 post-treatment (617.3 μmol h−1g−1) and raw bulk-C3N4 (178.2 μmol h−1g−1). This work opens up a new dimension for designing high performance g–C3N4–based catalysts targeting various photocatalytic processes.  相似文献   

9.
Here we report a 2D-2D heterostructure of g-C3N4/UMOFNs photocatalysts via mechanical grinding two kinds of two-dimensional nanosheets of g-C3N4 nanosheets and UMOFNs, which exhibits enhanced H2 evolution from water with simulated solar irradiation. g-C3N4 nanosheets are in close contact with UMOFNs, and there is a certain interaction between them, showing the effect of superimposition on the two-dimensional layer. The 2D-2D heterostructure offers a maximal photocatalytic hydrogen production activity of 1909.02 μmol g−1 h−1 with 3 wt% of UMOFNs, which is 3-fold higher than that of g-C3N4 nanosheets (628.76 μmol g−1 h−1) and 15-flod higher than that of bulk g-C3N4 (124.30 μmol g−1 h−1). The significant increasement of photocatalysis is due to 2D-2D heterostructure possessing a short charge transfer distance and large contact area between g-C3N4 and UMOFNs. The highly dispersed NiO, CoO and π-π bonds in UMOFNs of 2D-2D structure also promote charge transfer and enhance the photocatalytic activity.  相似文献   

10.
Graphite-like carbon nitride (g-C3N4) has been regarded as a promising photocatalyst for solar-to-chemical conversion. Nevertheless, the narrow absorption of light extremely limited its photocatalytic performance under near-infrared (NIR) irradiation. Herein, the Cu7.2S4 with outstanding NIR absorption was successfully introduced to g-C3N4 nanosheets through a simple in-situ growth procedure. As expected, the constructed Cu7.2S4/g-C3N4 (CSCN) photocatalysts exhibit superior H2 production activity of 82 μmol g−1 h−1 under NIR light irradiation (λ > 800 nm), which outperforms currently reported g–C3N4–based NIR-driven H2 production systems. Especially, the optimal sample CSCN-5 displays a robust activity of 66 μmol g−1 h−1 at λ = 850 nm monochromatic light irradiation. The excellent photocatalytic performance is linked to the extended optical absorption as well as the efficient separation efficiency of photoinduced carriers, which are evidenced by the UV-visible absorption spectroscopy and photoelectrochemical test. This work provides an effective approach for constructing a Cu7.2S4/g-C3N4 photocatalytic system for the transformation of NIR solar energy into hydrogen.  相似文献   

11.
Nano TiO2 prepared by a hydrothermal method and silver-loaded nano TiO2 prepared by impregnation were studied for the photocatalytic production of hydrogen from glycerol:water mixtures. The structural characteristics were revealed using XRD, EDAX, DRS, TEM, XPS, BET surface area and Raman techniques. The photocatalytic hydrogen production has been investigated under solar light irradiation. Effects of nano TiO2 calcination temperature, silver loading, photocatalyst content, light source and Ag oxidation state on hydrogen production have been systematically studied. Maximum hydrogen production of 200 μmol h?1 g?1 is observed on 4wt% silver-loaded nano TiO2 catalyst in pure water and the maximum hydrogen production of 7030 μmol h?1 g?1 is observed on 3wt% silver-loaded nano TiO2 catalyst in glycerol: water mixtures. Silver-loaded nano TiO2 reduced and photodeposited catalysts show similar hydrogen production activities in glycerol: water mixtures under solar irradiation. The optimum catalyst modified with conducting carbon materials (graphene oxide, graphene, carbon nanotubes) by a solid-state dispersion method were also studied for hydrogen production under solar light irradiation. Compared with pure nano TiO2, a 3wt% silver-loaded nano TiO2/graphene composite exhibited an approximately 17-fold enhancement of hydrogen production leading to hydrogen production rates of 12,100 μmol h?1 g?1. Based on the characterization results and hydrogen production activity on these catalysts, a structure–activity correlation has been proposed wherein the interacting Ag2OAg phases on the surface of nano TiO2 play an important role in maintaining a high hydrogen production activity under solar irradiation.  相似文献   

12.
Small surface area, deficient reaction sites, and poor visible-light harvest ability of the original graphitic carbon nitride (g-C3N4) severely restrict its photocatalytic H2 production activity. Here, an ultrathin porous and N vacancies rich g-C3N4 (VN-UP-CN) was fabricated by thermal oxidation exfoliation and high-temperature calcination under the Ar atmosphere. The ultrathin porous morphology increases the surface area and reaction sites of original g-C3N4, moreover, the produced N vacancies greatly broaden the light harvest ability of ultrathin porous g-C3N4 (UP–CN). Therefore, VN-UP-CN displays the maximal H2 production rate of 2856.7 μmol g?1 h?1 in triethanolamine solution under visible-light, and adding 0.5 M of K2HPO4 can further improve its H2 production rate to 4043.9 μmol g?1 h?1. Importantly, VN-UP-CN also shows good performance in simultaneous photocatalytic H2 production and benzyl alcohol oxidation to benzaldehyde with the activities of 196.08 and 198.28 μmol g?1 h?1, respectively, which avoids the waste of sacrificial agent and photogenerated holes. This work affords an achievable way to design the efficient g-C3N4 photocatalyst by morphology and defect regulation, which can effectively utilize both photogenerated electrons and holes for H2 and value-added chemical production.  相似文献   

13.
Glycerol is the main by-product during the trans-esterification of vegetable oils to biodiesel. In this study, we investigate the process of photocatalytic hydrogen production from glycerol aqueous solution, with the use of cobalt doped TiO2 photocatalyst under solar light irradiation. Cobalt doped TiO2 photocatalysts are prepared by impregnation method and these catalysts are characterized by XRD, EDAX, DRS, TEM, EPR and XPS techniques. DRS studies clearly show the expanded photo response of TiO2 into visible region on impregnation of Co2+ ions on surface of TiO2. XPS studies also show change in the binding energy values of O1s, Ti 2p and Co 2p, indicating that Co2+ ions are in interaction with TiO2. Maximum hydrogen production of 220 μ mol h−1 g−1 is observed on 2 wt% cobalt doped TiO2 catalysts in pure water under solar irradiation. A significant improvement in hydrogen production is observed in glycerol: water mixtures; and maximum hydrogen production of 11,021 μ mol h−1 g−1 is obtained over 1 wt% cobalt doped TiO2 in 5% glycerol aqueous solutions. Furthermore, to evaluate some reaction parameters such as cobalt wt% on TiO2, glycerol concentration, substrate effect (alcohols) and pH of the solution on the hydrogen production activity are systematically investigated. When the catalysts are examined under UV irradiation, a 3–4 fold increase in activity is observed where this activity seems to decrease with time; however, a continuous activity is observed under solar irradiation on these catalysts. The decreased activity could be ascribed the loss of cobalt ions under UV irradiation, as evidenced by EDAX and TEM analysis. A possible explanation for the stable and continuous activity of cobalt doped TiO2 photocatalysts under solar irradiation is proposed.  相似文献   

14.
In this paper, a novel 2D bubble-like g-C3N4 (B–CN) with a highly porous and crosslinked structure is successfully synthesized via a cost-effective bottom-up process. The as-prepared B–CN photocatalyst delivers a considerably expanded specific surface area and increased active sites. Moreover, the 2D bubble-like structure can afford shortened diffusion paths for both photogenerated charge carriers and reactants. As a result, the photocatalytic H2 evolution rate of B–CN reached 268.9 μmol g?1 h?1, over 5 times more than that of bulk C3N4. The Ni ions were further deposited on B–CN as a cocatalyst to enhance the photocatalytic activity. Benefit from the synergy of 2D bubble-like structure and Ni species cocatalyst, recombination of photoinduced charges was greatly inhibited and the hydrogen evolution reaction (HER) was significantly accelerated. The resulted catalyst achieved a dramatically high H2 evolution rate of 1291 μmol g?1 h?1. This work provides an alternative way to synthesize novel porous carbon nitride together with non-noble metal cocatalysts toward enhanced photocatalytic activity for H2 production.  相似文献   

15.
In this paper, we designed a composite photocatalytic system in which cobalt nanoparticles (Co NPs) are attached to nitrogen-doped carbon (N-d-C) and co-bonded to the surface of the noted photocatalyst graphite carbon nitride (g-C3N4), showing an excellent photocatalytic hydrogen production. The bulk g-C3N4 was formed in the first thermal treatment in air using melamine as a precursor. Subsequently, the secondary calcination under N2 led to the synchronous fabrication of N-d-C/Co NPs and their combination with g-C3N4 to form a novel ternary photocatalyst (g-C3N4/N-d-C/Co NPs). Co NPs exposed on the surface of the nanomaterials endowed much more reaction sites than g-C3N4 for photocatalytic hydrogen production. Meanwhile, the embedded N-d-C provided an additional transfer approach for photocarriers. The as-prepared composite nanomaterials own a relatively high specific surface area of 97.45 m2 g?1 with an average pore size of 3.83 nm. As a result, compared with pristine g-C3N4 (~25.35 μmol g?1 h?1), the photocatalytic performance was increased by over 10 times (~270.05 μmol g?1 h?1). Our work gives a novel approach for highly active g–C3N4–based photocatalysts in the field of photocatalysis.  相似文献   

16.
In this work, ZnCdS nanoparticles (NPs) were decorated with FePt alloy, forming nanocomposites via ethylene glycol reduction method. The photocatalytic H2 production of the Fe1?xPtx–ZnCdS NPs was studied by changing the composition and weight percentage of Fe1?xPtx alloy in the nanocomposites under visible light (λ ≥ 420 nm) irradiation. The results showed that the hydrogen production rate of Fe1?xPtx–ZnCdS NPs had a significant enhancement over the pure ZnCdS (740 μmol g?1 h?1). The activity of the nanocomposites was dependent on the composition of Fe1?xPtx alloy and the highest hydrogen production rate of 2265 μmol g?1 h?1 was achieved by the 0.5 wt% Fe0.3Pt0.7–ZnCdS nanocomposites, which was even better than that of 0.5 wt% Pt–ZnCdS (1626 μmol g?1 h?1) under the same condition. This study highlights the significance of Pt base alloys as new cocatalysts for the development of novel composite photocatalysts.  相似文献   

17.
Graphite carbon nitride (g-C3N4) has caught far-ranging concern for its masses of advantages, for instance, the unique graphite-like two-dimensional lamellar structure, low cost, nontoxic, suitable bandgap of 2.7 eV and favorable stability. Whereas owing to the shortcomings of low solar absorptivity and fast recombination of photo-induced charge pairs, the overall quantum efficiency of photocatalysis for g-C3N4 is suboptimal, resulting in limited practicality of g-C3N4 (GCN). In our study, modified g-C3N4 materials (HCN) with ample carbon vacancies (CVs) were obtained through calcinating of g-C3N4 in H2 atmosphere. Higher specific surface area and more active sites of HCN were induced by roasting of g-C3N4 in H2. CVs that occurred in the N-(C3) bond lead to the reduction of electron density around N, thus narrowing the bandgap of HCN-3h and enlarging corresponding light response capability. Under the synergistic function of abundant pore construction and CVs on HCN, the photo-excited e?/h+ pairs can be memorably separated and transferred, which is favorable to photocatalytic efficiency. Among HCN, the HCN-3h sample has the highest H2 generation rate of 4297.9 μmol h?1 g?1, which achieves 2.3-fold higher than that of GCN (1291.7 μmol h?1 g?1). This paper brings forward a meaningful method of boosting the photocatalytic performance of photocatalysts by constructing abundant CVs.  相似文献   

18.
Photocatalysts with abundant active sites are essential for photocatalytic H2 evolution from water. Herein, Ni0.85Se-deposited g-C3N4 was obtained by a physical solvent evaporation method. The investigation shows that Ni0.85Se with unsaturated active Se atoms can significantly improve the photocatalytic activity of g-C3N4, and the H2 production rate of Ni0.85Se/g-C3N4 can reach 8780.3 μmol g?1 h?1, which is 3.5 and 92.9 times higher than that of Ni0.85+xSe/g-C3N4 (2497.9 μmol g?1 h?1) and pure g-C3N4 (94.5 μmol g?1 h?1), respectively. This improvement can be attributed to the quick charge transfer between Ni0.85Se and g-C3N4 with S-scheme heterojunction feature based on a series of trapping experiments and photoelectrochemical analysis. Moreover, abundant unsaturated Se atoms could provide more H2 evolution active sites. This work sheds light on the construction of heterojunctions with abundant active sites for H2 production.  相似文献   

19.
In this article, a ternary WO3/g‐C3N4@ BiVO4 composites were prepared using eco‐friendly hydrothermal method to produce efficient hydrogen energy through water in the presence of sacrificial agents. The prepared samples were characterized by scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), ultraviolet‐visible (UV‐vis), Brunauer‐Emmett‐Teller (BET) surface area, and photoluminescence spectroscopy (PL) emission spectroscopy. The experimental study envisages the formation of 2‐D nanostructures and observed that such kinds of nanostructures could provide more active sites for photocatalytic reduction of water and their inherent reactive‐species mechanism. The results showed the excellent photocatalytic performance (432 μmol h?1 g?1) for 1.5% BiVO4 nanoparticles in WO3/g‐C3N4 composite when compared with pure WO3 and BiVO4. The optical properties and photocatalytic activity measurement confirmed that BiVO4 nanoparticles in WO3/g‐C3N4 photocatalyst inhibited the recombination of photogenerated electron and holes and enhanced the reduction reactions for H2 production. The enhanced photocatalytic efficiency of the composite nanostructures may be attributed to wide absorption region of visible light, large surface area, and efficient separation of electrons/holes pairs owing to synergistic effects between BiVO4 and WO3/g‐C3N4. The prepared samples would be a precise optimal photocatalyst to increase their suppliers for worldwide applications especially in energy harvesting.  相似文献   

20.
Chemically modified g-C3N4 for the photocatalytic H2 evolution from water was explored. Bulk g-C3N4 was treated in hot HNO3 aqueous solution to obtain the oxidized material (o-g-C3N4), tested in water containing glucose as model water-soluble sacrificial biomass, using Pt as co-catalyst, under simulated solar light. The behaviour of o-g-C3N4 was studied in relation with catalyst amount, Pt loading, glucose concentration. Results showed that H2 production is favoured by increasing glucose concentration up to 0.1 M and Pt loading up to 3 wt%, and it resulted strongly enhanced using small amount of o-g-C3N4 (0.25 g L?1). o-g-C3N4 possesses superior photocatalytic activity (~26-fold higher) compared to pristine g-C3N4, with H2 evolution further improved by ultrasound-assisted exfoliation and evolution rates up to ca. 1370 μmol h?1 per gram of catalyst, with excellent reproducibility (RSD < 6%, n = 3). Significant production was observed also in river water and seawater, with results far better (up to ca. 2500 μmol g?1 h?1) compared to commercial AEROXIDE® P25 TiO2 under natural solar light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号