首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an exergetic optimization has been developed to determine the optimal performance and design parameters of a solar photovoltaic thermal (PV/T) air collector. A detailed energy and exergy analysis has been carried out to calculate the thermal and electrical parameters, exergy components, and exergy efficiency of a typical PV/T air collector. The thermal and electrical parameters of a PV/T air collector include solar cell temperature, back surface temperature, outlet air temperature, open‐circuit voltage, short‐circuit current, maximum power point voltage, maximum power point current, etc. An improved electrical model has been used to estimate the electrical parameters of a PV/T air collector. Furthermore, a new equation for the exergy efficiency of a PV/T air collector has been derived in terms of design and climatic parameters. A computer simulation program has been also developed to calculate the thermal and electrical parameters of a PV/T air collector. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Moreover, the simulation results obtained in this paper are more precise than the one given by the previous literature, and the new exergy efficiency obtained in this paper is in good agreement with the one given by the previous literature. Finally, exergetic optimization has been carried out under given climatic, operating, and design parameters. The optimized values of inlet air velocity, duct length, and the maximum exergy efficiency have been found. Parametric studies have been also carried out. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This article presents an overview on the research and development and application aspects for the hybrid photovoltaic/thermal (PV/T) collector systems. A major research and development work on the photovoltaic/thermal (PVT) hybrid technology has been done since last 30 years. Different types of solar thermal collector and new materials for PV cells have been developed for efficient solar energy utilization. The solar energy conversion into electricity and heat with a single device (called hybrid photovoltaic thermal (PV/T) collector) is a good advancement for future energy demand. This review presents the trend of research and development of technological advancement in photovoltaic thermal (PV/T) solar collectors and its useful applications like as solar heating, water desalination, solar greenhouse, solar still, photovoltaic-thermal solar heat pump/air-conditioning system, building integrated photovoltaic/thermal (BIPVT) and solar power co-generation.  相似文献   

3.
In order to improve the practicability of PV/T solar system, we proposed the theory and method on the application of diffuse‐reflection concentrator in the PV/T solar system and analyzed the concentration characteristics of this proposed application. In addition, we designed experimental prototype of PV/T solar system and conducted test and analysis of the thermal and electrical characteristics of the PV/T solar system with or without a concentrator, respectively. The results showed that for the PV/T solar system with diffuse‐reflection concentrator, the amount of incident irradiance was increased by an average of 26% during test period, and the 200‐L water in the system was heated to 58 °C, which was 12 °C higher than that of PV/T solar system without diffuse‐reflection concentrator; moreover, the max output power was increased by 11%. Therefore, it is a feasible way to improve the practicability of PT/V solar system by integrating a diffuse‐reflection concentrator. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, an integrated combined system of a photovoltaic (glass–glass) thermal (PV/T) solar water heater of capacity 200 l has been designed and tested in outdoor condition for composite climate of New Delhi. An analytical expression for characteristic equation for photovoltaic thermal (PV/T) flat plate collector has been derived for different condition as a function of design and climatic parameters. The testing of collector and system were carried out during February–April, 2007. It is observed that the photovoltaic thermal (PV/T) flat plate collector partially covered with PV module gives better thermal and average cell efficiency which is in accordance with the results reported by earlier researchers.  相似文献   

5.
In this paper, an attempt is made to investigate the thermal and electrical performance of a solar photovoltaic thermal (PV/T) air collector. A detailed thermal and electrical model is developed to calculate the thermal and electrical parameters of a typical PV/T air collector. The thermal and electrical parameters of a PV/T air collector include solar cell temperature, back surface temperature, outlet air temperature, open-circuit voltage, short-circuit current, maximum power point voltage, maximum power point current, etc. Some corrections are done on heat loss coefficients in order to improve the thermal model of a PV/T air collector. A better electrical model is used to increase the calculations precision of PV/T air collector electrical parameters. Unlike the conventional electrical models used in the previous literature, the electrical model presented in this paper can estimate the electrical parameters of a PV/T air collector such as open-circuit voltage, short-circuit current, maximum power point voltage, and maximum power point current. Further, an analytical expression for the overall energy efficiency of a PV/T air collector is derived in terms of thermal, electrical, design and climatic parameters. A computer simulation program is developed in order to calculate the thermal and electrical parameters of a PV/T air collector. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Finally, parametric studies have been carried out. Since some corrections have been down on thermal and electrical models, it is observed that the thermal and electrical simulation results obtained in this paper is more precise than the one given by the previous literature. It is also found that the thermal efficiency, electrical efficiency and overall energy efficiency of PV/T air collector is about 17.18%, 10.01% and 45%, respectively, for a sample climatic, operating and design parameters.  相似文献   

6.
In this paper, the optimization of a solar photovoltaic thermal (PV/T) water collector which is based on exergy concept is carried out. Considering energy balance for different components of PV/T collector, we can obtain analytical expressions for thermal parameters (i.e. solar cells temperature, outlet water temperature, useful absorbed heat rate, average water temperature, thermal efficiency, etc.). Thermal analysis of PV/T collector depends on electrical analysis of it; therefore, five-parameter current–voltage (IV) model is used to obtain electrical parameters (i.e. open-circuit voltage, short-circuit current, voltage and current at the point which has maximum electrical power, electrical efficiency, etc.). In order to obtain exergy efficiency of PV/T collector we need exergy analysis as well as energy analysis. Considering exergy balance for different components of PV/T collector, we obtain the expressions which show the exergy of the different parts of PV/T collector. Some corrections have been done on the above expressions in order to obtain a modified equation for the exergy efficiency of PV/T water collector. A computer simulation program has been developed in order to obtain the amount of thermal and electrical parameters. The simulation results are in good agreement with the experimental data of previous literature. Genetic algorithm (GA) has been used to optimize the exergy efficiency of PV/T water collector. Optimum inlet water velocity and pipe diameter are 0.09 m s−1, 4.8 mm, respectively. Maximum exergy efficiency is 11.36%. Finally, some parametric studies have been done in order to find the effect of climatic parameters on exergy efficiency.  相似文献   

7.
Electric energy production with photovoltaic (PV)/thermal solar hybrid systems can be enhanced with the employment of a bifacial PV module. Experimental model of a PV/thermal hybrid system with such a module was constructed and studied. To make use of both active surfaces of the bifacial PV module, we designed and made an original water-heating planar collector and a set of reflecting planes. The heat collector was transparent in the visible and near-infrared spectral regions, which makes it compatible with the PV module made of crystalline Si. The estimated overall solar energy utilization efficiency for the system related to the direct radiation flux is of the order of 60%, with an electric efficiency of 16.4%.  相似文献   

8.
文章设计了新型非晶硅太阳能PV/T空气集热器,该空气集热器能够解决传统太阳能PV/T热水器在高温波动情况下,晶硅电池热应力大的问题,同时避免了冬季管道发生霜冻的现象。文章通过实验对比,分析了非晶硅太阳能PV/T空气集热器、单独非晶硅光伏电池和传统太阳能空气集热器的能量效率和[火用]效率的差异。分析结果表明:非晶硅太阳能PV/T空气集热器的平均热效率为45.70%,比传统太阳能空气集热器的平均热效率降低了约25.88%;当空气质量流量增大至0.048 kg/s时,非晶硅太阳能PV/T空气集热器中的非晶硅光伏电池的平均电效率高于单独非晶硅光伏电池,它们的平均电效率分别为4.70%,4.54%;非晶硅太阳能PV/T空气集热器的总[火用]效率高于传统太阳能空气集热器的热[火用]效率和单独非晶硅光伏电池的电[火用]效率,非晶硅太阳能PV/T空气集热器总[火用]效率最大值为7.14%。文章的分析结果为非晶硅太阳能PV/T空气集热器的推广提供了参考。  相似文献   

9.
This study is dedicated to investigating the feasibility of photovoltaic/thermal (PV/T) collectors' technology for application in Jordan. Simple parallel-plate collector configurations were simulated using COMSOL: rectangular fins, triangular fins, and wavy walls. The wavy-wall configuration was found the most efficient alternative in terms of heat transfer with respect to the pumping power and performance factor that took into account the comparison with a plain-wall parallel-plate collector. However, the performance of the plain-wall parallel plate preceded that of the wavy wall by increasing the Reynolds number and the water channel height. The plain-wall parallel-plate configuration was further investigated on HOMER as a 5 MW solar plant that provides energy to a 5-MW facility. One MW of its load is direct thermal load. Different solar plant designs were compared. The PV/T plant was found to be very much energy saving but not feasible due to its high initial cost. However, the PV/T plant was better than the PV when the cooling was not complete compromising on some electric energy in favor of heat generation. Further work on reducing the cost of the PV/T collector is required especially with regard to contact methods between the PV and the absorber plate and to the weight of the collector.  相似文献   

10.
文章建立了光伏/相变材料(PV/PCM)太阳能热控系统二维模型,并根据模拟结果研究了相变材料热导率对太阳电池热控特性的影响。模拟结果表明,当PCM热导率由0.3 W/(m·K)逐渐增加至1.1 W/(m·K)时,相变材料对太阳电池的热控效果越来越好。此外,文章设计了PCM热导率分别为0.8,1.1 W/(m·K)的PV/PCM太阳能热控系统实验装置,在模拟光源和自然光条件下,对太阳能热控系统实验装置的输出功率以及太阳电池的温度进行测试。实验结果表明:在模拟光源下,与无PCM太阳电池相比,PCM热导率分别为0.8,1.1 W/(m·K)的太阳电池的最高温度分别降低了4.6,10.8℃,平均输出功率分别提高了2.2%,4.1%;在自然光条件下,与无PCM太阳电池相比,PCM热导率分别为0.8,1.1 W/(m·K)的太阳电池的最高温度分别降低了9.7,12℃,平均输出功率分别提高了3.1%,5.98%。  相似文献   

11.
The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPC and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic/thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPC) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. Energy balance equations have been developed for the various nodes of the system. Both thermal and electrical performance of the collector are presented and discussed.  相似文献   

12.
A review on photovoltaic/thermal hybrid solar technology   总被引:3,自引:0,他引:3  
A significant amount of research and development work on the photovoltaic/thermal (PVT) technology has been done since the 1970s. Many innovative systems and products have been put forward and their quality evaluated by academics and professionals. A range of theoretical models has been introduced and their appropriateness validated by experimental data. Important design parameters are identified. Collaborations have been underway amongst institutions or countries, helping to sort out the suitable products and systems with the best marketing potential. This article gives a review of the trend of development of the technology, in particular the advancements in recent years and the future work required.  相似文献   

13.
An indoor standard test procedure has been developed for thermal and electrical testing of PV/T collectors connected in series. For this, a PV/T solar air heater has been designed, fabricated and its performance over different operating parameters were studied. Based on the energy balance equations, in a steady state condition, a thermal model has been developed. Comparison between experimental and theoretical results were also been carried out. The thermal and electrical efficiency of the solar heater is 42% and 8.4%, respectively. This test procedure can be used by manufacturers for testing of different types of PV modules in order to optimize its products.  相似文献   

14.
Hybrid photovoltaic thermal system is an effective method to convert solar energy into electrical and thermal energy. However, its effectiveness is widely affected due to the high temperature of photovoltaic panel, and it can be minimized by employing nanofluids to the PV/T systems. In this research, the effect of various nanoparticles on the PV/T systems was studied experimentally. The nanofluids Al2O3, CuO, and multiwall carbon nanotube (MWCNT) were dispersed with water at different volume fractions of 0, 0.5, 1, 2.5, and 5 (vol%) using ultrasonication process. The effect of nanomaterials on viscosity and density was classified. All tests were carried out in an outdoor laboratory setup for calibrating the PV temperatures, thermal conductivity, electrical power, electrical efficiency, and overall efficiency. In addition, the energy analyses were also made to estimate the loss of heat owing to the nanofluids. Results show that use of the nanofluid increased the electric power and electrical efficiency of PV/T compared with water. Furthermore, MWCNT and CuO reduced the cell temperature by 19%. Consequently, the nanofluids MWCNT, Al2O3, and CuO produced the impressive values of 60%, 55%, and 52% increase in an average electrical efficiency than conventional PV. Particularly, the MWCNT produced superior results compared with other materials. It is evidently clear from the result that the introduction of the nanofluid increases the thermal efficiency without adding any extra energy to the system. Moreover, insertion of Al2O3, CuO, and MWCNT on PV/T system increases the exergy efficiency more than conventional PV module.  相似文献   

15.
In the present investigation a theoretical analysis has been presented for the modelling of thermal and electrical processes of a hybrid PV/T air heating collector coupled with a compound parabolic concentrator (CPC). In this design, several CPC troughs are combined in a single PV/T collector panel. The absorber of the hybrid PV/T collector under investigation consists of an array of solar cells for generation of electricity, while collector fluid circulating past the absorber provides useful thermal energy as in a conventional flat plate collector. In the analysis, it is assumed that solar cell efficiency can be represented by a linear decreasing function of its temperature. Energy balance equations have been developed for the various components of the system. Based on the developed analysis, both thermal and electrical performance of the system as a function of system design parameters are presented and discussed. Results have been presented to compare the performance of hybrid PV/T collector coupled with and without CPC. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The objective of present study is to evaluate the performance of the photovoltaic (PV) module integrated with air duct for composite climate of India. In this case, thermal energy is produced along with electrical energy generated by a PV module with higher efficiency. An analytical expression for an overall efficiency (electrical and thermal) has been derived by using energy balance equation for each component. Experimental validation of thermal model of hybrid photovoltaic/thermal (PV/T) system has also been carried out. It has been observed that there is a fair agreement between theoretical and experimental observations. Further it is concluded that an overall thermal efficiency of PV/T system is significantly increased due to utilization of thermal energy in PV module.  相似文献   

17.
In order to get more power and heat from PV/T system, it is necessary to cool the PV cell and decrease its temperature. This is not an easy task especially in hot and humid climate areas. There is a lack of an effective cooling strategy of PV/T panels. The liquid based photovoltaic thermal collector systems are practically more desirable and effective than air based systems. Temperature fluctuation in liquid based PV/T is much less than the air based PV/T collectors which subjected to variation in solar radiation levels. In this study a review of the available literature on PV/T collector systems which utilize water and refrigerant (working fluid) as heat removal medium for different applications has been conducted. Future direction of water-cooled and refrigerant hybrid photovoltaic thermal systems was presented. This study revealed that the direct expansion solar-assisted heat pump system achieved better cooling effect of the PV/T collector.  相似文献   

18.
文章利用TRNSYS动态模拟软件研究了在我国不同建筑气候带条件下,不同类型的太阳能PV/T集热系统和普通太阳能PT集热系统的各项性能.其中,太阳能PV/T集热系统分为基于普通玻璃型太阳能PV/T集热系统和基于Low-e型太阳能PV/T集热系统.文章探究了基于普通玻璃型太阳能PV/T集热系统和基于Low-e型太阳能PV/...  相似文献   

19.
Integration of solar concentrators with photovoltaic (PV) systems reduces the required number of PV panels, which often account for the major costs of PV systems. The linear Fresnel reflector mirror is considered more effective because of its simplicity and effortless fabrication. An experimental test rig of a concentrated PV/thermal system that employs a linear configuration and horizontal absorber was built for evaluating its electrical and thermal performances. The considered concentrator consists of various widths of flat glass mirrors, which positioned with different angles, and with sun light focusing on the PV cells that fixed over an active cooling system. The experimental investigation of the proposed concentrated PV/thermal system shows that higher electrical and thermal efficiencies can be achieved at comparatively high temperature levels than that typically utilized in a nonconcentrated PV/thermal system. The characteristics of PV cells also indicate that the electrical efficiency values in case of no concentration and with concentration ratio of 6.0 are 9.6%, and 11%, respectively. The measured values for the inlet and outlet cooling water temperatures of the receiver showed that the maximum outlet temperature reached was 75°C with a flow rate of 0.025 L/min, and the product thermal efficiency was 62.3%. These obtained results illustrate an adequate and good thermal and electrical performance under the meteorological weather conditions of the province of Al‐Karak in Jordan.  相似文献   

20.
The current study presents a novel and straightforward approach for simulating photovoltaic/thermal (PV/T) systems using the commercial computational fluid dynamics (CFD) solver ANSYS‐FLUENT. Instead of resolving the natural convection within the air gap between the PV and the glass cover, the effective thermal conductivity approach is implemented. Moreover, the solar radiation incident on the PV layer is directly included in the energy equation of the PV domain to evaluate the resultant power output and heat generation. The validity of these implications is proven by comparing predicted data with experimental data from the literature. Comparative results reveal a root‐mean‐square error of 7% and 2% for the PV temperature and the outlet air temperature, respectively. A comprehensive numerical analysis is also conducted for a PV/T system with and without finned surfaces. In the parametric study, the impacts of varying a number of design parameters, operating conditions, and weather data over a wide range are assessed. Results reveal that channel height and air velocity have the greatest impact on the overall efficiency and outlet air temperature of a PV/T system. An optimization study is also conducted using the response surface methodology to obtain optimal values of design parameters and operating conditions for this system. The highest overall efficiencies and outlet air temperatures are achieved in PV/T systems comprising narrow channel geometries, regardless of the operating conditions or weather data considered. Optimal conditions are achieved for a collector with a collector length of 1.5 m, a channel height of 1 cm, and an air velocity of 2.3 m/s. For the optimal design, overall efficiency and outlet temperature values are evaluated as 53.4% and 310.9 K, respectively. Sensitivity analyses also observe the impact of adding fins to the air channel, and it is concluded that the addition of fins improves the overall efficiency of the PV/T system by up to 19%. However, adding fins does not significantly affect the outlet air temperature; nor does it improve the overall efficiency of the PV/T system beyond a critical channel height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号