首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper experimental investigations of natural convection heat transfer of air layers in vertical annuli are presented. In these experiments, the surface of the inner cylinder is maintained at a constant heat flux condition and the outer cylinder is cooled in the atmosphere. In order to obtain the convective contribution, the overall heat transfer data are corrected for thermal radiation and axial conduction losses from the end plates in the annuli. Special emphasis, in these investigations, was placed on the high Rayleigh number region where no experimental data are available in the literature. Data were obtained for Rayleigh numbers greater than 109. The radius ratios studied were 2.03 and 3.92, and the aspect ratios studied were 23.94 and 66.67. Heat transfer correlations for average Nusselt numbers were developed for different Rayleigh number regions. For the low Rayleigh number region the results of this paper agree with the correlations reported in the literature. Much needed data and correlations for the high Rayleigh number region are obtained for the first time. These results improve the predictive ability for the heat transfer characteristics in the high Rayleigh number region. ©1999 Scripta Technica, Heat Trans Asian Res, 28(1): 50–57, 1999  相似文献   

2.
With the latent heat, the phase change material (PCM) is widely used in battery thermal management (BTM) to control the temperature. In this paper, the porous medium is employed to enhance the heat transfer of PCM. The lattice Boltzmann model for PCM/porous medium in pore scale is considered, where the mesh system with porous medium (fixed point) is generated by quartet structure generation set (QSGS) method. The effects of the Rayleigh number and porosity on the heat transfer process in BTM are investigated. The results show that decreasing the porosity will accelerate the melting rate. When the porosities are 0.9, 0.8, 0.7, and 0.6, the total melting times are decreased by 23.7%, 43.3%, 58.0%, and 75.4%, compared with pure PCM. The heat is transferred through the high‐conductivity framework. The natural convection in the porous medium is weak, and the conduction is the dominated heat transfer. As a result, the area of solid–liquid interface will be increased, and the heat‐transferred rate is accelerated. However, when the Rayleigh number is raised to 105, applying the porous medium with porosity of 0.9 will increase the total melting time, resulted from the stronger natural convection of PCM. The present study is helpful for design of PCM/porous medium‐based BTM.  相似文献   

3.
The thermal and heat transfer characteristics of lauric acid during the melting and solidification processes were determined experimentally in a vertical double pipe energy storage system. In this study, three important subjects were addressed. The first one is temperature distributions and temporal temperature variations in the radial and axial distances in the phase change material (PCM) during phase change processes. The second one is the thermal characteristics of the lauric acid, which include total melting and total solidification times, the nature of heat transfer in melted and solidified PCM and the effect of Reynolds and Stefan numbers as inlet heat transfer fluid (HTF) conditions on the phase transition parameters. The final one is to calculate the heat transfer coefficient and the heat flow rate and also discuss the role of Reynolds and Stefan numbers on the heat transfer parameters. The experimental results proved that the PCM melts and solidifies congruently, and the melting and solidification front moved from the outer wall of the HTF pipe (HTFP) to the inner wall of the PCM container in radial distances as the melting front moved from the top to the bottom of the PCM container in axial distances. However, it was difficult to establish the solidification proceeding at the axial distances in the PCM. Though natural convection in the liquid phase played a dominant role during the melting process due to buoyancy effects, the solidification process was controlled by conduction heat transfer, and it was slowed by the conduction thermal resistance through the solidified layer. The results also indicated that the average heat transfer coefficient and the heat flow rate were affected by varying the Reynolds and Stefan numbers more during the melting process than during the solidification process due to the natural convection effect during the melting process.  相似文献   

4.
Heat transfer during melting in enclosures is important in the design of heat exchangers using phase change materials (PCM) for latent heat thermal energy storage. In this paper, the finite element method is employed to simulate the convection-dominated melting of a PCM in a cylindrical-horizontal annulus heated isothermally from the inside wall. The effects of Rayleigh number on the melting rate as well as the evolution of the flow pattern are examined. Results of the numerical experiments reveal that an increases in Rayleigh number promotes heat transfer rate. Multiple cellular pattern is observed at high Rayleigh numbers (106).  相似文献   

5.
One of the main components of a closed ice slurry system is the heat exchanger in which ice slurry absorbs heat resulting in the melting ice crystals. Design calculations of heat exchangers are mainly based on heat transfer coefficient and pressure drop data. But experiments presented in this paper show the effect of ice slurry mass flux on heat transfer rate and heat transfer coefficient during melting. For the experiments, ice slurry was made from 6.5% ethylene glycol–water solution, flowing through a 16.91mm internal diameter, 1500mm long horizontal copper tube. The ice slurry was heated by hot water circulated at the annulus gap of the heat exchanger. Experiments of the melting process were conducted with changing the ice slurry mass flux and the ice fraction from 800 to 3500kgm?2s?1 and 0 to 25%, respectively. During the experiment, it was found that the measured heat transfer rates increase with the mass flow rate and ice fraction; however, the effect of ice fraction appears not to be significant at high mass flow rate. At the region of low mass flow rates, a sharp increase in the heat transfer coefficient was observed when the ice fraction was more than a certain value. Experiments were also conducted to investigate the effect of hot water temperature on the heat transfer coefficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Numerical calculations are carried out for natural convection induced by a temperature difference between a cold outer square enclosure and a hot inner circular cylinder. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model an inner circular cylinder based on the finite volume method for different Rayleigh numbers varying over the range of 103–106. The study goes further to investigate the effect of the inner cylinder location on the heat transfer and fluid flow. The location of the inner circular cylinder is changed vertically along the center-line of square enclosure. The number, size and formation of the cell strongly depend on the Rayleigh number and the position of the inner circular cylinder. The changes in heat transfer quantities have also been presented.  相似文献   

7.
Sodium reacts chemically with water in the case of an unexpected tube failure of a steam generator (SG) in a fast breeder reactor (FBR). In order to predict the event with high accuracy, it is very important to understand the characteristics of heat transfer inside the tube in detail during the tube failure due to the sodium–water reaction. Experiments were performed by using purified water under the following conditions: initial pressure of 11.2–13.4 MPa, initial water temperature of 200 °C, and water mass flux of 45.7 to 3630 kg/(m2s). The test tube was heated rapidly by high‐frequency induction current. The time averaged heat flux was estimated by using an inverse solution from the measured temperatures at two points on three different locations along the tube. It was confirmed that the derived values agreed with the measured heat fluxes on the outer surface within 20% accuracy. It was found that the characteristics of the heat transfer strongly depend on the flow rate. The heat transfer on the wall changed from nucleate boiling to transient‐film boiling during increasing the heat flux and returned to the nucleate boiling during decreasing the heat flux. A counterclockwise cycle always appeared in the transition boiling region, where the nucleate and film boiling coexisted and the area ratio of these varied with time. The adequacy of heat transfer correlations to evaluate tube overheating was confirmed. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20320  相似文献   

8.
A numerical study for steady-state, laminar natural convection in a horizontal annulus between a heated triangular inner cylinder and cold elliptical outer cylinder was investigated using lattice Boltzmann method. Both inner and outer surfaces are maintained at the constant temperature and air is the working fluid. Study is carried out for Rayleigh numbers ranging from 1.0 × 103 to 5.0 × 105. The effects of different aspect ratios and elliptical cylinder orientation were studied at different Rayleigh numbers. The local and average Nusselt numbers and percentage of increment heat transfer rate were presented. The average Nusselt number was correlated. The results show that by decreasing the value of aspect ratio and/or increasing the Rayleigh number, the Nusselt number increases. Also the heat transfer rate increases when the ellipse positioned vertically.  相似文献   

9.
Thermal energy storage (TES) using phase change materials (PCMs) has recently received considerable attention in the literature, due to its high storage capacity and isothermal behaviour during the storage (melting or charging) and removal (discharging or solidification). In this study, a novel modification on a tube-in-shell-type storage geometry is suggested. In the proposed geometry, the outer surface of the shell is inclined and it is the objective of this study to determine the optimum range for the inclination angle of the shell surface. Paraffin with a melting temperature of 58.06°C, which is supplied by the Merck Company, is used as the PCM. The PCM is stored in the vertical annular space between an inner tube through which the heat transfer fluid (HTF), hot water, is flowing and a concentrically placed outer shell. At first, the thermophysical properties of this paraffin are determined through the differential scanning calorimeter (DSC) analysis. Temporal behaviour of the PCM undergoing a non-isothermal solid–liquid phase change during its melting or charging by the HTF are determined for different values of the inlet temperature and the mass flow rate of the HTF. The new geometry is shown to respond well with the melting characteristics of the PCM and to enhance heat transfer inside the PCM for a specific range of the shell inclination angle. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA–SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 °C and has a latent heat of 181.7 J g−1, and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA–SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems.  相似文献   

11.
Natural convection heat transfer between concentric rectangular pipes was studied numerically. It has been found that rolls of even numbers form in the region on the top surface of the inner pipe. The number of rolls depends on both the Rayleigh number and the aspect ratio. An oblong circulation of flow forms in the region between the side surface of the inner pipe and the surface of the outer pipe. The aspect ratio does not have much effect on the average Nusselt number at the side surface of the inner pipe. The relation between the Nusselt and Rayleigh numbers at the top surface resembles that of the Rayleigh-Bénard convection obtained by Silveston (Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic Stability, Oxford University Press, 68). The average Nusselt number at the bottom surface of the inner pipe decreases with increasing aspect ratio because the region where heat transfer is affected significantly by convection is limited. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(4): 271–283, 1998  相似文献   

12.
Melting of the ice/water as the phase change material in a horizontal single‐tube annulus is sluggish when the stable stratification exists at the bottom of the configuration. To obviate this problem, three heat transfer enhancement techniques could be implemented using the enthalpy‐based lattice Boltzmann method with the double distribution function method to accelerate the process. The multifarious arrangements of the tubes in this horizontal annulus are investigated to expand the region affected by the natural convection. Also, the dispersion of the Cu nanoparticles in the base PCM could boost the thermal conductivity and melting rate. Finally, the metallic porous matrix made of nickel–steel alloys and saturated with the base PCM could be used to enhance the thermal conductivity of the base PCM. The solid–liquid phase change process is defined as the constrained melting of ice‐water in the tube heating mode. There is a thermal equilibrium between ice/water and the nickel–steel porous matrix and the Cu nanoparticles. The Prandtl number, Stefan number, Rayleigh number, and Darcy number are 6.2, 1, 104–105, and 10?3, respectively. The volumetric concentric of the nanoparticles is between 0 and 0.02 and the porosity ranging from 1 to 0.9 in the representative elementary volume scale.  相似文献   

13.
Phase change materials (PCM) used in latent heat storage systems usually have very low thermal conductivities. This is a major drawback in maintaining the required heat exchange rate between PCM and heat transfer fluid. This paper investigates the enhancement of the heat transfer between PCM and heat transfer fluid, using high thermal conductivity as additives like stainless steel pieces, copper pieces and graphite–PCM composite material. In the experiments, palmitic–lauric acid (80:20) (PL) and stearic–myristic acid (80:20) (SM) were used as PCMs. Test results show that heat transfer enhancement of copper pieces was better at 0.05 Ls?1 flow rate compared to 0.025 Ls?1. Using copper as an additive increased the heat transfer rate 1.7 times for melting and 3.8 times for freezing when flow rate was 0.050 Ls?1. Decreasing the flow rate from 0.050 to 0.025 Ls?1, increased the melting times 1.3 times and freezing times 1.8 times, decreasing heat transfer rates accordingly. The best result of heat transfer enhancement was observed for the PCM–graphite composite. However, changing the flow rate did not affect the heat transfer rate when graphite was used as additive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Melting of an organic phase change material (PCM) n-triacontane (C30H62) in a side heated tall enclosure of aspect ratio 10, by a uniformly dissipating heat source has been studied computationally and experimentally. While heat transfer data for melting in enclosures under isothermal wall boundary condition are available in the literature, other boundary conditions, such as constant heat flux often arise in applications of PCM for transient thermal management of electronics. An implicit enthalpy–porosity approach was utilized for computational modeling of the melting process. Experimental visualization of melt front locations was performed. Comparisons between experimental and computational heat transfer data and melt interface locations were good. Fluid flow and heat transfer characteristics during melting suggested that natural convection plays a dominant role during initial stages of melting. At later times, the strength of natural convection diminishes as melting is completed. Correlations of heat transfer rate and melt fraction with time were obtained.  相似文献   

15.
Numerical simulations were carried out to investigate the performance of shape-stabilized phase change material (SSPCM) wallboard with sinusoidal heat flux waves on the outer surface and compared with traditional building materials – brick, foam concrete and expanded polystyrene (EPS). One-dimensional enthalpy equation was solved using control volume-based implicit finite-difference scheme. Time lag (φ), decrement factor (f) and phase transition keeping time (ψ) of inner surface were applied to analyze the effects of PCM thermo-physical properties, inner surface convective heat transfer coefficient and thickness of SSPCM wallboard. The results showed that for SSPCM, there exist two flat segments within one wave length period of inner surface heat flux lines and it has larger time lag and lower decrement factor than those three ordinary building materials. It was found that melting temperature and thermal conductivity of SSPCM have little effects on φ, f and ψ, which is different from the case of temperature waves; for a certain outside heat flux wave, there exist critical values of latent heat of fusion and thickness of SSPCM above which the heat flux wave amplitude can be diminished to zero; inner surface convective heat transfer coefficient is one important factor which significantly influences the decrement factor; and the phase transition zone leads to small fluctuations of the original flat segments of inner surface heat flux line.  相似文献   

16.
Efficient application of intermittent renewable energy sources, like solar, waste heat recovery, and so forth, depends on a large extent on the thermal energy storage methods. Latent heat energy storage with the use of phase‐change material (PCM) is the most promising one because it stores large energy in the form of latent heat at a constant temperature. The current study investigates melting and solidification of PCM in the triplex tube heat exchanger (TTHX) numerically. The two‐dimensional numerical model has been developed using Ansys Fluent 16.2, which considers the effects of conduction as well as natural convection. To overcome the limitation imposed by the poor thermal conductivity of PCM, use of fins is the better solution. In the current study, longitudinal fins are used for better performance of TTHX, which increases heat‐transfer area between PCM and heat‐transfer fluid. The effects of location of fins, that is, internal, external, and combined internal‐external fins, are observed. All three configurations improve melting as well as solidification process. During the melting process, internal and combined internal‐external fins are equally efficient, in which maximum 59% to 60% reduction in melting time is achieved. For solidification, internal‐external fins combination gives maximum 58% reduction in solidification time.  相似文献   

17.
This report deals with heat transfer in the melting process of crushed ice filling an ice/water heat storage container. The volumetric heat transfer rate and melting end-times are measured for the cases when rectangular-type, small-stone-type, and particle-type ice in the container are melted using circulating warm water. The melting end-time is shortest for small-stone-type ice and longest for particle-type ice. The volumetric heat transfer rate is greater for small-stone-type ice and rectangular-type ice than for particle-type ice. The flow rate of the circulating warm water fed into the tank from an inlet pipe has a major effect on the heat transfer rate. © 1999 Scripta Technica, Heat Trans Asian Res, 28(7): 583–596, 1999  相似文献   

18.
Direct numerical simulation was performed for a spatially advancing turbulent flow and heat transfer in a two‐dimensional curved channel, where one wall was heated to a constant temperature and the other wall was cooled to a different constant temperature. In the simulation, fully developed flow and temperature from the straight‐channel driver was passed through the inlet of the curved‐channel domain. The frictional Reynolds number was assigned 150, and the Prandtl number was given 0.71. Since the flow field was examined in the previous paper, the thermal features are mainly targeted in this paper. The turbulent heat flux showed trends consistent with a growing process of large‐scale vortices. In the curved part, the wall‐normal component of the turbulent heat flux was twice as large as the counterpart in the straight part, suggesting active heat transport of large‐scale vortices. In the inner side of the same section, temperature fluctuation was abnormally large compared with the modest fluctuation of the wall‐normal velocity. This was caused by the combined effect of the large‐scale motion of the vortices and the wide variation of the mean temperature; in such a temperature distribution, large‐scale ejection of the hot fluid near the outer wall, which is transported into the near inner‐wall region, should have a large impact on the thermal boundary layer near the inner wall. Wave number decomposition was conducted for various statistics, which showed that the contribution of the large‐scale vortex to the total turbulent heat flux normal to the wall reached roughly 80% inside the channel 135° downstream from the curved‐channel inlet. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20275  相似文献   

19.
The two-phase heat transfer coefficient and pressure drop of pure HFC-134a condensing inside a smooth helically coiled concentric tube-in-tube heat exchanger are experimentally investigated. The test section is a 5.786 m long helically coiled double tube with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from smooth copper tubing of 9.52 mm outer diameter and 8.3 mm inner diameter. The outer tube is made from smooth copper tubing of 23.2 mm outer diameter and 21.2 mm inner diameter. The heat exchanger is fabricated by bending a straight copper double-concentric tube into a helical coil of six turns. The diameter of coil is 305 mm. The pitch of coil is 35 mm. The test runs are done at average saturation condensing temperatures ranging between 40 and 50 °C. The mass fluxes are between 400 and 800 kg m−2 s−1 and the heat fluxes are between 5 and 10 kW m−2. The pressure drop across the test section is directly measured by a differential pressure transducer. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The average heat transfer coefficient of the refrigerant is determined by applying an energy balance based on the energy rejected from the test section. The effects of heat flux, mass flux and, condensation temperature on the heat transfer coefficients and pressure drop are also discussed. It is found that the percentage increase of the average heat transfer coefficient and the pressure drop of the helically coiled concentric tube-in-tube heat exchanger, compared with that of the straight tube-in-tube heat exchanger, are in the range of 33–53% and 29–46%, respectively. New correlations for the condensation heat transfer coefficient and pressure drop are proposed for practical applications.  相似文献   

20.
This article presents a numerical investigation on melting of phase change material (PCM) enhanced by nanoparticles inside a cylindrical tube using the lattice Boltzmann method. Water (ice) and copper particles are chosen as the base fluid (PCM) and nanoparticles, respectively. Results show that the melting rate is the same for all regions of the cylinder for a low Rayleigh number, while it intensifies at the top half of the cylinder for a moderate Rayleigh number. Also, existence of strong unstable flow in the bottom portion of the cylinder at a Rayleigh number of 106 causes the melting rate to keen after a definite time. Nanoparticles have no significant effect on the melting rate at the beginning of melting, where the conduction mode of heat transfer dominates between the hot wall and solid PCM, while full melting of PCM occurs earlier by the increase of solid concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号