共查询到20条相似文献,搜索用时 39 毫秒
1.
Improvements in the thermal conductivity and mechanical properties of phase‐change microcapsules with oxygen‐plasma‐modified multiwalled carbon nanotubes 下载免费PDF全文
The thermal properties and mechanical properties are the key factors of phase‐change microcapsules (microPCMs) in energy‐storage applications. In this study, microPCMs based on an n‐octadecane (C18) core and a melamine–urea–formaldehyde (MUF) shell supplemented with O2‐plasma‐modified multiwalled carbon nanotubes (CNTs) were synthesized through in situ polymerization. Meanwhile, two different addition methods, the addition of modified CNTs into the emulsion system or into the polymer system, were compared and examined. Scanning electron microscopy micrographs showed that the microPCMs were spherical and had a broadened size distribution. Fourier transform infrared testing demonstrated that the modified CNTs did not affect C18 coated by MUF resin. The results indicate that the thermal conductivity and mechanical properties of the microPCMs were remarkably improved by the addition of a moderate amount of modified CNTs, but the heat enthalpy and encapsulated efficiency decreased slightly. Moreover, the thermal conductivity and mechanical properties of microPCMs modified with CNTs directly added to the polymer system were superior to those with CNTs added to emulsion system. In particular, when 0.2 g of modified CNTs were added to the polymer system, the thermal conductivity of the microPCMs was improved by 225%, and the breakage rates of the microPCMs at 4000 rpm for 5, 10, and 20 min decreased by 74, 72, and 60%, respectively, compared with that of the microPCMs without modified CNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45269. 相似文献
2.
As‐received multiwalled carbon nanotubes (MWCNTs) were first treated by a 3 : 1 (v/v) mixture of concentrated H2SO4/HNO3 and further functionalized by ethylenediamine/dicyclohexylcarbodiimide/tetrahydrofuran solution. MWCNT/epoxy nanocomposites were prepared. Their cure behaviors were investigated by dynamic differential scanning calorimetry. Quantitative analysis of the activation energy as a function of the degree of curing was carried out by the Flynn‐Wall‐Ozawa method. The fitted multiple regression equations for values of the activation energy of different systems were obtained. MWCNTs have the retardation effect on the cure reaction of epoxy resin, while the functional groups on the surface of amine‐modified MWCNTs could accelerate the cure reactions. Thermal stability was studied by thermogravimetric analysis. The filling of amine‐modified MWCNTs is beneficial to lower the cure activation energy and improve thermal stability of the nanocomposite. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
3.
The influence of functional end groups on the thermal stability of poly(lactic acid) (PLA) in nitrogen‐ and oxygen‐enriched atmospheres has been investigated in this article using differential scanning calorimetry, thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Functional end groups of PLA were modified by succinic anhydride and l ‐cysteine by the addition–elimination reaction. PLA was synthesized by azeotropic condensation of l ‐lactic acid in xylene and characterized by nuclear magnetic resonance. The values of the activation energies determined by TGA in nitrogen and oxygen atmospheres revealed that the character of functional end groups has remarkable influence on the thermal stability of PLA. Moreover, DMA confirmed the strong influence of functional end groups of PLA on polymer chains motion. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41105. 相似文献
4.
Junjun Li Feng Yang Guiquan Guo Dong Yang Jiang Long Deliang Fu Jennifer Lu Changchun Wang 《Polymer International》2010,59(2):169-174
Carbon nanotubes (CNTs) are capable of traversing cellular membranes by endocytosis and are therefore promising materials for use in imaging and drug delivery. Unfortunately, pristine CNTs are practically insoluble and tend to accumulate inside cells, organs and tissues. To overcome the poor dispersibility and toxicity of pristine CNTs, hydrophilic functionalization of CNTs has been intensively investigated. Water‐soluble multi‐walled carbon nanotubes (MWCNTs) were prepared by in situ polymerization of acrylic acid in a poor solvent for poly(acrylic acid) (PAA). The solvent type influenced the grafted density and chain length of PAA. MWCNTs with a high grafted density of PAA (22 wt%) could be well dispersed in water, NaCl aqueous solution (0.9 wt%) and cell culture media. The in vitro cytotoxicity of these MWCNTs for endothelial cells is reasonably low even at high concentration of PAA‐g‐MWCNT (70 µg mL?1). The experimental results show that the biocompatibility of these MWCNTs is sufficient for biological applications. PAA‐g‐MWCNTs were successfully utilized for lymph node tracing. Experimental results suggest that PAA‐g‐MWCNTs have potential to be used as a vital staining dye, which may simplify the identification of lymph nodes during surgery. Copyright © 2009 Society of Chemical Industry 相似文献
5.
A series of high‐solid resol phenolic resins (HSRPRs) were synthesized with different molar ratios (1.6, 1.8, 2.0, 2.2, and 2.4) of formaldehyde to phenol using calcium oxide and sodium hydroxide as catalyst. The effects of F/P molar ratios on physical properties, free formaldehyde and phenol, activity, structure, and thermally resistant properties of HSRPRs were fully investigated by chemical assays, liquid and solid 13C‐NMR, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The curing kinetics of different F/P molar ratios were explored with differential scanning calorimeter at four different heating rates (5, 10, 15, 20°C/min) from 35 to 200°C. Overall, HSRPRs with F/P = 2.0 had excellent comprehensive properties. The study was significant in solving the wastewater problem during the process of industry‐scale preparation of HSRPRs. We believed that the experimental findings would provide a new avenue for further study and application of HSRPRs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
6.
Nantao Hu Hongwei Zhou Guodong Dang Chunhai Chen Jing Jing Wanjin Zhang 《Polymer International》2008,57(7):927-931
BACKGROUND: Recently, much work has focused on the efficient dispersion of carbon nanotubes (CNTs) throughout a polymer matrix for mechanical and/or electrical enhancement. However, there are still only few reports about gradient distribution of CNTs in polymer matrices. In the work reported here, CNTs embedded in a polymer film with a gradient distribution were successfully obtained and studied. RESULTS: For composite films with gradient distributions of CNTs, the upper surface behaves as an intrinsic insulator, while the lower one behaves as a semiconductor, or even as a conductor. It is also found that with an increase of 1 wt% CNTs, the resistance of the bottom surface decreases by 2–3 orders of magnitude, as compared with pure polyarylene ether nitrile; furthermore, when the proportion of CNTs increases up to 5 wt%, the resistance of the bottom surface shows only very little change. As a result, sufficient matrix conductivity of the bottom surface could be achieved at a lower filler concentration with CNTs in a gradient distribution. Meanwhile, the thermal stability, glass transition temperature and tensile properties of the matrix are maintained. CONCLUSION: There is considerable interest in such gradient composite films, which could be applied in the electrical engineering, electronics and aerospace fields, for their excellent mechanical properties, thermal stability and novel electrical properties. Copyright © 2008 Society of Chemical Industry 相似文献
7.
The thermal behavior of grass fiber was characterized by means of thermogravimetric analysis and differential scanning calorimetry analysis. The results proved that the removal of water‐soluble matter improved the thermal behavior of grass fiber over that of unleached fiber, and this was further enhanced by an alkali treatment of the grass fiber. The isothermal weight loss of the grass‐fiber specimens was analyzed at 100, 200, and 300°C for different time periods. Accelerated aging of the grass‐fiber samples was carried out to determine the effect of aging on the tensile strength. Partially delignified grass fiber showed maximum thermal stability. X‐ray diffraction analysis was also performed to verify the composition and to correlate the change in the tensile strength due to the water leaching and alkali treatment. The processing of grass fiber with NaOH and NaClO2 reduced the amorphous fraction in the fiber sample. This may have been a result of the loss of the amorphous noncellulosic components of the fibers and the degradation of the unordered regions of the grass fiber. However, mercerization of the grass fiber revealed an increase in the amorphous fraction after a certain time exposure, confirming the decrease in the crystallinity. The morphology of the water‐leached and alkali‐treated grass fiber was studied with scanning electron microscopy © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
8.
The thermal behavior of vinyl ester resin matrix composites reinforced with jute fibers treated for 2, 4, 6, and 8 h with 5% NaOH was studied with Thermo‐gravimetric analysis and differential scanning calorimetry. The moisture desorption peak shifted to a higher temperature, from 37 to 58.3°C, for all the treated‐fiber composites because of improved wetting of the fibers by the resin and stronger bonding at the interface. The degradation temperature of the vinyl ester resin in the composites was lowered to 410.3°C from that of the neat resin, 418.8°C. The X‐ray diffraction studies showed increased crystallinity of the treated fibers, which affected the enthalpy of the α‐cellulose and hemicellulose degradation. The hemicellulose degradation temperature remained the same (299.7°C) in all the treated‐fiber composites, but the enthalpy associated with the hemicellulose degradation showed an increasing trend in the treated composites with a small increase in the weight loss. This could be attributed to the increased hydrogen bonding between the more accessible ? OH groups of the hemicellulose in the noncrystalline region of the jute fiber and the resin. The degradation temperature of α‐cellulose was lowered from 364.2 to 356.8°C in the treated composites. The enthalpy of α‐cellulose degradation showed a decreasing trend with a lowering of the weight loss. The crystalline regions of the fiber, consisting of closely packed α‐cellulose chains, were bonded with the resin mainly on the surface through hydrogen bonds and became more resistant to thermal degradation; this reduced the weight loss. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 123–129, 2004 相似文献
9.
To improve the mechanical and surface properties of poly(etherurethane) (PEU), multi‐walled carbon nanotubes (MWCNTs) were surface grafted by 3,3,4,4, 5,5,6,6,7,7,8,8,8‐tridecafluoro‐1‐octanol (TDFOL) (MWCNT‐TDFOL) and used as reinforcing agent for PEU. Fourier‐transform infrared spectroscopy revealed the successful grafting of MWCNTs. PEU filled with MWCNT‐TDFOL could be well dispersed in tetrahydrofuran solution, and tensile stress–strain results and dynamic mechanical analysis showed a remarkable increase in mechanical properties of PEU by adding a small amount of MWCNT‐TDFOL. Contact angle testing displayed a limited improvement (just 9°) in the hydrophobicity of PEU surface by solution blending with MWCNT‐TDFOL. However, a large improvement of surface hydrophobicity was observed by directly depositing MWCNT‐TDFOL powder on PEU surface, and the water contact angle was increased from 80° to 138°. Our work demonstrated a new way for the modification of carbon nanotubes and for the property improvement of PEU. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
10.
Covalent functionalization of multi‐walled carbon nanotubes (MWNTs) with side‐chain azobenzene liquid crystalline poly{6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate} (PMMAZO) was successfully achieved via atom transfer radical polymerization. The resultant samples were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis and transmission electron microscopy. The results of differential scanning calorimetry and polarized optical microscopy show that the liquid crystalline behavior of PMMAZO‐functionalized carbon nanotubes (CNT‐PMMAZO) is similar to that of the PMMAZO homopolymer. The orientation of MWNTs and CNT‐PMMAZO in a PMMAZO matrix in the presence of an electric field was investigated. The results indicate that the orientation of MWNTs is dominated by the viscosity of the matrix, but the orientation of CNT‐PMMAZO is controlled by both the viscosity and the presence of a liquid crystalline phase ascribed to the compatibility between MWNTs and PMMAZO becoming better after covalent modification. Copyright © 2010 Society of Chemical Industry 相似文献
11.
Preparation of 2‐ethyl‐4‐methylimidazole derivatives as latent curing agents and their application in curing epoxy resin 下载免费PDF全文
Three kinds of 2‐ethyl‐4‐methylimidazole (EMI) derivatives (N‐acetyl EMI, N‐benzoyl EMI, and N‐benzenesulfonyl EMI) were synthesized through the reaction of EMI with acetyl chloride, benzoyl chloride, and benzenesulfonyl chloride, respectively. And the structure was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H‐nuclear magnetic resonance spectroscopy (1H NMR) spectra. Furthermore, the synthesized EMI derivatives were applied in diglycidyl ether of bisphenol A epoxy resin (DGEBA) as latent curing agent. Differential scanning calorimeter (DSC) was used to analyze the curing behavior of DGEBA/EMI derivative systems, indicating DGEBA could be efficiently cured by the EMI derivatives at 110~160°C, and the corresponding curing activation energy ranged from 71 to 86 kJ/mol. Viscosity data proves that the storage life of DGEBA with N‐acetyl EMI (NAEMI), N‐benzoyl EMI (NBEMI), and N‐benzenesulfonyl EMI (NBSEMI) at room temperature was 38 d, 50 d, and 80 d, and that at 10°C was 90 d, 115 d, and 170 d, respectively. Besides, thermogravimetry (TG), izod impact strength (IIS), and tensile shear strength (TSS) were tested to characterize the thermal stability and mechanical properties of DGEBA cured by EMI derivatives. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42563. 相似文献
12.
S. M. Tambe R. G. Tasaganva J. J. Jogul D. C. Castiglione M. Y. Kariduraganavar 《应用聚合物科学杂志》2009,114(4):2291-2300
Active nonlinear optical nitro‐substituted thiazole, benzothiazole, and thiadiazole chromophores were prepared and condensed with tolylene‐2,4‐diisocyanate (TDI) and 4,4′‐methylenedi(phenyl isocyanate) (MDI) to yield a series of polyurethanes. The resulting polyurethanes were characterized with Fourier transform infrared, proton nuclear magnetic resonance, and ultraviolet–visible spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The weight‐average molecular weights of the polyurethanes ranged between 19,500 and 28,000 (weight‐average molecular weight/number‐average molecular weight = 1.71–2.15). All the polyurethanes exhibited excellent solubility in most common organic solvents, and this indicated that these polyurethanes offered good processability. The glass‐transition temperatures (Tg's) of the polyurethanes were in the range of 166–204°C. Among the polyurethanes, chromophores containing the nitrothiazole moiety exhibited lower Tg values in comparison with those of chromophores containing nitrobenzothiazole and nitrothiadiazole moieties. This was attributed to the small size of the nitrothiazole moiety in the polyurethane matrix. The polyurethanes containing a TDI backbone demonstrated relatively high Tg values in comparison with those of the polyurethanes containing an MDI backbone. This was a result of an enhancement of the rigidity caused by the incorporation of a toluene ring into the polyurethane backbone. The second harmonic generation (SHG) coefficients of the poled polyurethane films ranged from 67.29 to 105.45 pm/V at 1064 nm. High thermal endurance of the poled dipoles was observed for all the polyurethanes. This was attributed to the formation of extensive hydrogen bonds between urethane linkages. Furthermore, none of the developed polyurethanes showed SHG decay below 150°C, and this signified their acceptability for nonlinear optical devices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
13.
Nantao Hu Hongwei Zhou Guodong Dang Xianhua Rao Chunhai Chen Wanjin Zhang 《Polymer International》2007,56(5):655-659
Multi‐walled carbon nanotube (MWNT)‐reinforced polyimide nanocomposites were synthesized by in situ polymerization of monomers in the presence of acylated MWNTs. The acyl groups associated with the MWNTs participated in the reaction through the formation of amide bonds. This process enabled uniform dispersion of MWNT bundles in the polymer matrix. The resultant MWNT–polyimide nanocomposite films were optically transparent with significant mechanical enhancement at a very low loading (0.5 wt%). Evidence has been obtained for improved interactions between the nanotubes and the matrix polymer. Copyright © 2006 Society of Chemical Industry 相似文献
14.
The curing behavior of polydimethylsiloxane‐modified allylated novolac/4,4′‐bismaleimidodiphenylmethane resin (PDMS‐modified AN/BDM) was investigated by using Fourier transform infrared spectrometry (FTIR) and differential scanning calorimetry. The results of FTIR confirmed that the curing reactions of the PDMS‐modified AN/BDM resins, including “Ene” reaction and Diels–Alder reaction between allyl groups and maleimide groups, should be similar to those of the parent allylated novolac/4,4′‐bismaleimidodiphenylmethane (AN/BDM) resin. The results of dynamic DSC showed that the total curing enthalpy of the PDMS‐modified AN/BDM resins was lower than that of the parent resin. Incorporation of polydimethylsiloxane (PDMS) into the backbone of the allylated novolac (AN) resin favored the Claisen rearrangement reaction of allyl groups. The isothermal DSC method was used to study the kinetics of the curing process. The experimental data for the parent AN/BDM resin and the PDMS‐modified AN/BDM resins exhibited an nth‐order behavior. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
15.
Polypropylene matrix composites reinforced with single‐walled carbon nanotubes (SWNTs) were produced with different nanotube concentrations. The characterization of these new materials was performed by differential scanning calorimetry and Raman and Fourier transform infrared spectroscopy to obtain information on the matrix–nanotube interaction, on the crystallization kinetics of polypropylene, and especially on the macrostructure and organization of the nanotubes in the composite. On the one hand, the results confirmed the expected nucleant effect of nanotubes on the crystallization of polypropylene, but on the other hand, this effect was not linearly dependent on the SWNT content: there was a saturation of the nucleant effect at low nanotube concentrations. Raman spectroscopy was successfully applied to demonstrating that in the composite films, the crystallization kinetics were strongly affected by the distance between the nanotube bundles as a result of a different intercalation of the polymer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 708–713, 2003 相似文献
16.
Chitosan functionalization with a series of sulfur‐containing α‐amino acids for the development of drug‐binding abilities 下载免费PDF全文
Chitosan (Chi; 0.5 g) in 69.66 mM aqueous acetic acid was mixed with 312.4 mM methionine (methi) at 0.01 mL/s to disperse and cause optimum collisions for supporting condensation reactions through ? NH2 of Chi and ? COOH groups of methi. The functionalized chitosan (f‐Chi) product with methi developed an amide bond, which was represented as methi‐functionalized chitosan [Chi–NH? C(?O)–methi]. Both the 1‐Ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC) and Dean–Stark methods were followed for Chi functionalization. Sulfonation with chlorosulfonic acid in a dimethylformamide medium was conducted at 90 °C and 750 rpm with an approximately 72% yield. The Chi–NH? C(?O)–methi was characterized by 1H‐NMR spectroscopy and Fourier transform infrared stretching frequencies. The onset temperature of 280 °C recorded by thermogravimetric analysis/differential scanning calorimetry analysis, confirmed the high stability of the covalent bonds in Chi–NH? C(?O)–methi. The synthesis was repeated with other series members of sulfur (S) atoms containing α‐amino acids: homocysteine, ethionine, and propionine. The shielding of terminal ? CH3 was enhanced on elongation of the terminal alkyl chain in the case of propionine. The peak for the ? NH2 of Chi at a δ value of 4.73 ppm shifted to 5.36 ppm in Chi–NH? C(?O)–methi because of the involvement of ? NH2 in ? NH? C(?O)? . Theoretically, the value of ? NH2 of Chi was 5.11 ppm, with a difference of 0.38 ppm as compared to the experimentally determined value of 4.73 ppm. Additionally, a new peak at a δ value of 3.26 ppm also confirmed Chi functionalization. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46000. 相似文献
17.
18.
Yasumasa Morita 《应用聚合物科学杂志》2005,97(3):946-951
Epoxy siloxane monomer, 1,3‐Bis[2‐(3‐{7‐oxabicyclo[4.1.0]heptyl})ethyl]‐tetramethyldisiloxane, was cured with methylhexahydrophthalic anhydride, and the catalysts, N,N‐dimethylbenzylamine (BDMA) and tetra‐n‐butylphosphonium o,o‐diethylphosphorodithioate (PX‐4ET), were compared. The curing reactivity of BDMA was higher than that of PX‐4ET, but the thermal stability of the polymer was lower. PX‐4ET caused less thermal discoloration, which increased in proportion to catalyst concentration. The optimum was 0.71–0.35 mol %. Maximum hardness and glass transition temperature as well as minimum coefficient of thermal expansion and thermal discoloration was achieved with equivalent amounts of epoxy and anhydride. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 946–951, 2005 相似文献
19.
An antioxidant derivative, 6‐sulfanylhexyl 3‐(3,5‐di‐tert‐butyl‐4‐hydroxyphenyl)propanoate, was synthesized and examined. With a radical initiator, the addition of this compound to pending vinyls of OH‐telechelic, low molecular weight liquid polybutadiene (LBH) was performed to various degrees of conversion to form polymeric antioxidants (PAOs) in which the phenolic moiety was separated from the main chain by a spacer [? CH2CH2? S? (CH2)6? O? CO? ]. Pure, unstabilized LBH was mixed in several ratios with PAOs, Irganox 1520, and Irganox 1076, and the oxidation stabilities of these mixtures, determined by thermogravimetric analysis and differential scanning calorimetry, were compared. Probably because of their good compatibility with LBH, PAOs exhibited equal or better effectiveness than commercial antioxidants of the Irganox type. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 885–889, 2003 相似文献
20.
The present investigation has been achieved in accordance with the Diels–Alder reaction (1,4 cycloaddition) to produce a new halogenated bicyclic adduct. ortho‐Bromoallylbenzoate is a new dienophile that was prepared in a pure form, and its structure was confirmed. The Diels–Alder syntheses of hexachlorocyclopentadiene and the new dienophile were studied to determine the optimum condensation reaction conditions under a temperature range of 90–160°C, reaction times of 1–8 h, and molar diene/dienophile ratios from 1:1 to 5:1 as a consequence. The optimum conditions reached were a temperature of 140°C, an initial diene/dienophile molar ratio of 3:1, and a duration time of 6 h. The maximum stoichometric yield under these optimum conditions (82.5%) was obtained. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2331–2338, 2003 相似文献