首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer blend technology has been widely used for the past several years for the modification or enhancement of mechanical properties of polymers to obtain an overall balance of properties over those of the constituents. Despite its interesting mechanical and thermal properties, the impact strength of polypropylene leaves wide scope for improvement. A series of blends of ethylene vinyl acetate (EVA) copolymer with an impact grade of isotactic polypropylene (i‐PP) were prepared by single screw extrusion at 0–0.32 volume fraction of the dispersed phase. The mechanical properties such as tensile behavior, elongation‐at‐break, and impact strength of these blends systems as well as crystallinity were evaluated. Crystallinity data have been used in greater depth to support the mechanical properties. Differential scanning calorimetry studies conducted to study the modification in crystallinity of the crystalline component, i‐PP, of the blend revealed that the rubber component of the blend enhanced the crystallinity of i‐PP phase by providing sites for nucleation. Tensile modulus and strength decreased while the impact strength and breaking elongation enhanced with blending elastomer concentration. The improved properties of these PP/EVA blends are encouraging for carrying out further work on this system (composites) and suggest potential high impact strength applications for PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
膨胀阻燃三元乙丙橡胶/聚丙烯热塑性硫化胶的性能   总被引:2,自引:1,他引:1  
分析了膨胀型阻燃剂聚磷酸铵(APP)、季戊四醇(PER)的加入方式对三元乙丙橡胶(EPDM)/聚丙烯(PP)体系硫化特性的影响,研究了加入不同膨胀型阻燃剂及协效剂硼酸锌(ZB)、有机蒙脱土(OMMT)对动态硫化EPDM/PP热塑性硫化胶(EPDM/PPTPV)性能的影响。结果表明,在动态硫化前加入APP或PER时,EPDM/PP体系不能进行硫化;当APP的加入量为30份时,EPDM/PPTPV的综合力学性能较佳;在EPDM/PPTPV中同时加入APP、PER、三聚氰胺(MEL)时,随着三者加入量的增加,体系的阻燃性能增强,但拉伸强度明显降低,三者的最佳用量为30份APP、10份PER、10份MEL,此时体系的黏度与纯EPDM/PPTPV相当;加入ZB或OMMT时,EPDM/PPTPV的拉伸强度降低,且加入OMMT体系的阻燃效果优于加入ZB体系;加入OMMT时,在低剪切速率下,体系的黏度减小;在高剪切速率下,体系的黏度增大;加入ZB时,在低剪切速率下,体系的黏度与未加ZB体系相当;在高剪切速率下,体系的黏度增大。  相似文献   

3.
A modified kaolinite by grafting with phytic acid (PA-g-Kaol) is fabricated, and it was introduced into ethylene vinyl acetate (EVA) with intumescent flame retardancy (IFR) together to improve the flame retardancy of EVA composites. The results show the limiting oxygen index value of EVA/ (18.0 wt% IFR)/ (2.0 wt% PA-g-Kaol) is 30.8%. Meanwhile, there is only one dripping produced in the vertical burning test. What's more, the flame-retardant mechanism is demonstrated by TG-IR, real-time-IR and GC–MS analysis. The results indicate that some pyrolytic products of IFR and PA-g-Kaol, like ammonia and phosphoric acid, catalyze the crosslinking of EVA and flame retardant, the resultant compact char protects the substrate from further burning.  相似文献   

4.
A novel intumescent flame retardant: tetra‐spirophosphoryl‐benzoguanamine (TSPB) containing three constituents was used as a new flame retardant for polypropylene to prepare flame‐retardant materials, whose flammability and thermal behavior were studied by the limited oxygen index (LOI), thermogravimetric analysis (TGA), in addition whose mechanical properties were investigated in this work. It was found that when the addition of TSPB was 25 wt %, the LOI value of the PP could achieve to 29.5 and pass the UL‐94 V‐0 rating test. The TGA data showed that TSPB could enhance the thermal stability of PP and effectively increase the char residue formation. The mechanical performance test showed that the addition of TSPB improve the mechanical performances of PP to some extent. Thus, the trinity intumescent flame retardant TSPB is good to modify PP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Wheat straw (WS) has numerous advantages compared with traditional bioadditives such as starch and lignin. So in this work, based on WS and silica microencapsulated ammonium polyphosphate, flame retardant polypropylene/wheat straw (WSP) composites were prepared by melted blend method. Flame retardant and thermal properties of WSP composites have been investigated. The results of cone calorimeter show that peaks of heat release rate and total heat release of the flame retardant WSP composite decrease substantially compared with those of pure polypropylene. The peak of heat release rate value of the flame retardant WSP composite decreases from 1290.5 to 247.9 kW/m2, and the total heat release value decreases from 119.4 to 46.3 MJ/m2. Meanwhile, thermal degradation and gas products of the flame retardant WSP composite were monitored by thermogravimetric analysis and thermogravimetric analysis‐infrared spectrometry. The result of thermal analysis shows that the flame retardant WSP composite has a high thermal stability and has a 30.0 wt% residual char at 600°C. From this work, we hope to provide a method to prepare flame retardant polymer composites with a biodegradable natural material‐WS.  相似文献   

6.
Flame-retardant polypropylene (FR-PP) materials are realized by use of natural-sourced flame-retardant materials. Phosphorylated sodium alginate, ammonium polyphosphate, and dipentaerythritol are used to create an intumescent flame retardant (IFR). This realized flame retardant is embedded into polypropylene (PP) through melt blending method. The components, chemical structures, thermal properties, and degradation mechanisms of the samples are characterized by infrared spectrometry, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and cone calorimeter test. The results indicate that an effective IFR is obtained due to gas phase and condensed phase synergistic flame-retardant ability during combustion and degradation of FR-PP. This work presents a facile method for preparing FR-PP with efficient flame retardancy. This study is a first proof of concept for an innovative flame retardant, which could find application in future in the fields of automotive industry and the construction of electronic devices. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47794.  相似文献   

7.
Uncrosslinked and chemically crosslinked binary blends of low‐ and high‐density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt‐mixing process using 0–3 wt % tert‐butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation‐at‐break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co‐continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261–3270, 2007  相似文献   

8.
To solve the ‘wicking actions’ caused by fibre, intumescent flame retardant (IFR) was introduced into the resin of continuous glass fibre-reinforced polypropylene (CGF/PP) composites. The influence of IFR on the properties of composites were investigated by a double cantilever beam test, thermogravimetric analysis, limiting oxygen index, vertical burning test (UL-94), and cone calorimetric test. The results revealed that when the content of IFR was 15 wt-%, the initial Mode I interlaminar fracture toughness (GI init.) and propagation fracture toughness (GI prop.)) were enhanced by 123.2 and 70.26%, respectively, compared to composites with no IFR. The maximum weight loss rate (Tmax) was improved to various degrees. Samples could self-extinguish with an oxygen concentration of 32.4% and achieve a UL-94 V-1 rating. Furthermore, the peak of heat release rate, total heat release, fire performance index, and mass loss rate tests indicated that IFR could dramatically enhance the flame retardancy of the composites.  相似文献   

9.
A novel charring agent (CNCA‐DA) containing triazine and benzene ring, using cyanuric chloride, aniline, and ethylenediamine as raw materials, was synthesized and characterized. The effects of CNCA‐DA on flame retardancy, thermal degradation, and flammability properties of polypropylene (PP) were investigated by limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), and cone calorimeter test (CCT). The TGA results showed that CNCA‐DA had a good char forming ability, and a high initial temperature of thermal degradation; the char residue of CNCA‐DA reached 18.5% at 800°C; Ammonium polyphosphate (APP) could improve the char residue of APP/CNCA‐DA system, the char residue reached 31.6% at 800°C. The results from LOI and UL‐94 showed that the intumescent flame retardant (IFR) containing CNCA‐DA and APP was very effective in flame retardancy of PP. When the mass ratio of APP and CNCA‐DA was 2 : 1, and the IFR loading was 30%, the IFR showed the best effect; the LOI value reached 35.6%. It was also found that when the IFR loading was only 20%, the flame retardancy of PP/IFR can still pass V‐0 rating in UL‐94 tests, and its LOI value reached 27.1%. The CCT results demonstrated that IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), and mass loss (ML). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The synergistic effects of fumed silica on the thermal and flame‐retardant properties of intumescent flame retardant (IFR) polypropylene based on the NP phosphorus‐nitrogen compound have been studied by Fourier transfer infrared (FTIR) spectroscopy, cone calorimeter test (CCT), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), limiting oxygen index (LOI), and UL‐94 tests. The LOI and UL‐94 data show that when ≤1 wt % fumed silica substituted for the IFR additive NP can increase 2 to 4% LOI values of the PP blends and keep the V‐0 rating. The data obtained from the CCT tests indicate the heat release rates (HRR) reduce by about 23% for the PP/NP sample with 0.5 wt % fumed silica, whereas the mass loss rates (MLR) and total heat release (THR) values are much lower than those of the PP/NP samples without fume silica. The TGA data demonstrate that a suitable amount of fumed silica can increase the thermal stability and charred residue of the PP/IFR/SiO2 blends after 500°C. The morphological structures of charred residues observed by SEM give positive evidence that a suitable amount of fumed silica can promote the formation of compact intumescent charred layers and prevent the charred layers from cracking, which effectively protects the underlying polymer from burning. The dynamic FTIR spectra reveal that the synergistic flame‐retardant mechanism of a suitable amount of fumed silica with IFR additive is due to its physical process in the condensed phases. However, a high loading of fumed silica restricts the formation of charred layers with P? O? P and P? O? C complexes formed from burning of polymer materials and destroys the swelling behavior of intumescent charred layers, which deteriorates the flame retardant and thermal properties of the PP/IFR blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
采用氮磷膨胀型阻燃剂制备了无卤阻燃聚丙烯(PP)材料,研究了马来酸酐(MAH)接枝三元乙丙橡胶(EPDM)(EPDM-g-MAH)对PP无卤阻燃材料性能的影响.结果表明:加入EPDM-g-MAH可提高阻燃剂和PP基体间的界面作用,降低试样在燃烧过程中的熔融滴落现象,且加入EPDM-g-MAH提高了阻燃PP的力学性能.此外,加入EPDM-g-MAH可提高PP无卤阻燃材料在高温(600~800℃)下的炭层热稳定性以及材料的最大热分解速率,但会降低材料的最大热分解温度.因此,少量的EPDM-g-MAH可以提高PP无卤阻燃材料的极限氧指数(LOI),但当w(EPDM-g-MAH)超过10%时,PP无卤阻燃材料的LOI下降,阻燃性能降低.  相似文献   

12.
An intumescent flame retardant (IFR), pentaerytheritol phosphate ester melamine salt (PPEM) was synthesized and chemically modified by magnesium oxide (MgO) or/and calcium oxide (CaO), respectively. The fire retardant efficiency of MgO and CaO as synergistic agents in polypropylene (PP) was evaluated by normal fire testing methods. The results showed that MgO and CaO exhibited a synergistic effect on fire retardancy of PP. The addition of 0.2% of MgO or CaO into PP/PPEM composite could decrease the self-extinguishing time and improve the limited oxygen index (LOI) obviously. The cone calorimeter (CONE) tests and the thermal analysis revealed that the introduction of MgO and CaO neutralized the acidity of PPEM, which leads to a thermal stabilization and a delay of the intumescent process of the system, and promote the formation of a high quality charred layer which can prevent PP from decomposing. Thus, a suitable amount of MgO and CaO acts as a synergistic agent in the flame-retarded PP/PPEM system. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
The synthesized flame retardant 9,10‐dihydro‐9‐oxa‐10‐phosphaphanthrene‐10‐oxide/vinyl methyl dimethoxysilane (DV) was used to modify multiwalled carbon nanotubes (MWNTs). The results of FTIR, 1H‐NMR, and TGA measurements show that DV has been covalently grafted onto the surfaces of MWNTs, and the MWNTs‐g‐DV is obtained successfully. Transmission electron microscopy images show that a core‐shell nanostructure appears with MWNTs as the core and the DV thin layers as the shell, and the modified MWNTs with DV can achieve better dispersion than unmodified MWNTs in EVM matrix. Thermogravimetric analysis and cone calorimeter tests indicate that the thermal stability and flame retardant are improved for the presence of the MWNTs in EVM matrix. Moreover, the improvement is more evident for EVM/MWNTs‐g‐DV composite compared to unmodified MWNTs‐based composite, which can be attributed to the better dispersion of the DV‐modified MWNTs and to the chemical structure of the combustion residue. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Three kinds of inorganic particles, zinc borate (ZB), organic montmorillonite (OMMT), and expanded graphite (EG) as synergistic flame retardants, are incorporated into ethylene-propylene-diene monomer/polypropylene (EPDM/PP) composites filled with intumescent flame retardants (IFR). The effect of three synergistic flame retardants on the combustion, thermal stability, and mechanical properties of the EPDM/PP/IFR composites are investigated by limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), thermogravimetric analysis (TGA), scanning electron microscopy, mechanical property testing, and dynamic mechanical analysis (DMA). The results from LOI, UL-94, and CCT show that the synergistic effect of IFR with ZB and EG is better than IFR with OMMT in the flame retardant EPDM/PP/IFR composites. The TGA results indicate that the thermal stability and char residues of the composites is improved with the addition of inorganic particles, which is attributed to the formation of dense char layers to isolate heat flow. DMA results including storage modulus (G'), loss modulus (G"), and loss factor (tan δ) suggest that the composites with inorganic particles exhibit more rubber-filler interaction, which limits the movement of the rubber chains.  相似文献   

15.
The flame retardant polypropylene containing the micro-envelope core-shell structure flame retardant, which encapsulated ammonium polyphosphate into melamine-formaldehyde resin and sodium silicate through in situ polymerization was prepared with polyamide 6, added as a carbon-forming agent. The composition of ammonium polyphosphate, encapsulated ammonium polyphosphate with melamine-formaldehyde resin and the micro-envelope core-shell structure flame retardant were characterized. The fire safety and thermal stability were investigated and showed an improvement including limiting oxygen index, thermogravimetric analysis, vertical burning tests, and microscale combustion calorimeter. The burned compounds were also studied to confirm the burning mechanism. The results showed the flame retardant performance had been greatly improved, while polyamide 6 had better char-forming effect. Besides, the water solubility of flame retardants and their influence on the mechanical properties of polypropylene were also investigated. The results on the effects of additives demonstrated a high efficiency flame retardant to polypropylene. A core-shell flame retardant that sodium silicate and melamine-formaldehyde resin-coated ammonium polyphosphate had been constructed. The effect of the built flame retardant system on the combustion performance of polypropylene was studied from the mechanism and performance. The LOI of the most flame retardant polypropylene reached 28.6%, and UL-94 reached the V-0 level.  相似文献   

16.
Two commercial polymer materials, metallocene linear low density polyethylene (m‐LLDPE) and ethylene/vinyl acetate copolymer (EVA) have been used to form binary blends of various compositions. The mechanical properties, morphology, rheological behavior, dynamic mechanical properties, and crystallization of m‐LLDPE/EVA blends were investigated. It was found that with the addition of EVA, the fluidity and processability of m‐LLDPE were significantly improved, and the introduction of polar groups in this system showed no significant changes in mechanical properties at lower EVA content. As verified by morphology observation and differential scanning calorimetry analysis, miscible blends were formed within certain weight ratios. Dynamic mechanical property studies showed that flexibility of the blends was enhanced in comparion with pure m‐LLDPE, where the peak value of loss modulus shifted to lower temperature and its intensity was enhanced as EVA content increased, indicating the existence of more amorphous regions in the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 905–910, 2004  相似文献   

17.
The ammonium polyphosphate (APP)–pentaerythritol (PT)–melamine (M) system was selected as an intumescent flame retardant (IFR). The influence of dichromic acid–etched polypropylene (EPP) on the properties and compatibility of IFR/polypropylene (PP) composites was studied. The results obtained from mechanical tests and SEM showed that EPP was a true coupling agent for IFR/PP blends, but without changing the necessary flame retardancy. The cocrystallization between bulk PP and PP segments of EPP was confirmed by WAXD analysis. Flow tests showed that the flow behavior of composites in the melt is that of a pseudoplastic liquid, which is significant for EPP's effect on the rheological behavior of IFR/PP composite. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1388–1391, 2004  相似文献   

18.
Effect of irradiation on mechanical and structural properties of ethylene vinyl acetate copolymers (EVA) hollow fibers was studied by the tests such as determination of gel content, density, tensile, FTIR, SEM, and DMA. These effects were discussed based on dose and irradiation environment. The results of gel content depicted that irradiated EVA in ambient conditions had tendency to chain scission while the crosslinking overcame in irradiated samples under nitrogen. Density insignificantly enhanced with irradiation dose. In tensile test, irradiation induced increase in tensile strength and decrease in elongation at break (especially in samples irradiated in nitrogen). Also, changing in layer orientation could be observed by SEM images. In addition, irradiation caused altering peak intensity in FTIR spectrum. DMA results demonstrated that irradiation broaden the elastic zone. Totally, irradiation enhances features especially in irradiated EVA18 in nitrogen. Since, according to stabilization of induced deformation and improvement of mechanical properties (that created by radiation), the irradiated samples can be used in different applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
利用二苯基二甲氧基硅烷和苯基三甲氧基硅烷合成了聚硼硅氧烷树脂,并探索了最佳的合成工艺条件。将聚硼硅氧烷树脂添加到低密度聚乙烯/乙烯醋酸乙烯酯共聚物/膨胀型阻燃剂(PE LD/EVA/IFR)复合材料中,以期可以提高膨胀型阻燃剂与聚合物基体的相容性。采用氧指数仪、热重分析仪、力学性能测试等表征手段分析了复合材料的阻燃性能、热性能和力学性能。结果表明,聚硼硅氧烷树脂可提高复合材料的阻燃效果,并且对复合材料的力学性能没有明显的影响。  相似文献   

20.
Mesoporous silica SBA‐15 synthesized from Pluronic P123 and tetraethoxysilane was used as a synergistic agent on the flame retardancy of polypropylene (PP)/intumescent flame‐retardant (IFR) system. Limiting oxygen index (LOI), UL‐94 rating and thermogravimetric analysis were used to evaluate the synergistic effect of SBA‐15 on PP/IFR system. It showed that PP/IFR system could reach V‐0 with loading of SBA‐15 ranging from 0.5 to 3 wt%, while without SBA‐15 it had no rating at UL‐94 test. The LOI value increased from 25.5 to 32.2 when the loading of SBA‐15 was 1 wt%. The thermal stability of PP/IFR was improved in the presence of SBA‐15 and the amount of the char residue at 600° C was increased from 8.96 to 16.42 wt% when loading of SBA‐15 varied from 0.5 to 5 wt%. Laser Raman spectroscopy (LRS) and scanning electron microscopy were employed to study the morphology of the char residue of PP/IFR system with and without SBA‐15. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号