首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Latent heat storage (LHS) using phase change materials is quite attractive for utilization of the exergy of solar energy and industrial exhaust heat because of its high‐heat storage capacity, heat storage and supply at constant temperature, and repeatable utilization without degradation. In this article, general LHS technology is outlined, and then recent advances in the uses of LHS for high‐temperature applications (over 100 °C) are discussed, with respect to each type of phase change material (e.g., sugar alcohol, molten salt, and alloy). The prospects of future LHS systems are discussed from a principle of exergy recuperation. In addition, the technologies to minimize exergy loss in the future LHS system are discussed on the basis of the thermodynamic analysis by ‘thermodynamic compass’. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a theoretical analysis and an experimental test on a shell‐and‐tube latent heat storage exchanger. The heat exchanger is used to recover high‐temperature waste heat from industrial furnaces and off‐peak electricity. It can also be integrated into a renewable energy system as an energy storage component. A mathematical model describing the unsteady freezing problem coupled with forced convection is solved numerically to predict the performance of the heat exchanger. It provides the basis for an optimum design of the heat exchanger. The experimental study on the heat exchanger is carried out under various operating conditions. Effects of various parameters, such as the inlet temperature, the mass flow rate, the thickness of the phase‐change material and the length of the pipes, on the heat transfer performance of the unit are discussed combined with theoretical prediction. The criterion for analyzing and evaluating the performance of heat exchanger is also proposed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Accelerated thermal cycle tests for melt/freeze cycles of urea were conducted. Urea has shown a very high degradation in its latent heat and melting point within the first few cycles and did not melt after a few cycles. It is recommended that urea should not be used as a latent heat storage material. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Lauric acid (m.p.: 42.6°C) and myristic acid (m.p.: 52.2°C) are phase change materials (PCM) having quite high melting points which can limit their use in low‐temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of lauric acid (LA) and myristic acid (MA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 66.0 wt% LA forms a eutectic mixture having melting temperature of 34.2°C and the latent heat of fusion of 166.8 J g?1. This study also considers the experimental establishment of thermal characteristics of the eutectic PCM in a vertical concentric pipe‐in‐pipe heat storage system. Thermal performance of the PCM was evaluated with respect to the effect of inlet temperature and mass flow rate of the heat transfer fluid on those characteristics during the heat charging and discharging processes. The DSC thermal analysis and the experimental results indicate that the LA–MA eutectic PCM can be potential material for low‐temperature solar energy storage applications in terms of its thermo‐physical and thermal characteristics. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, numerical results pertaining to cyclic melting and freezing of an encapsulated phase‐change material (PCM) have been reported. The cyclic nature of the present problem is relevant to latent heat thermal energy storage system used to power solar Brayton engines in space. In particular, a physical and numerical model of the single‐tube phase change heat storage system was developed. A high‐temperature eutectic mixture of LiF‐CaF2 was used as the PCM and dry air was used as the working fluid. Numerical results were compared with available experimental data. The trends were in close agreement. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(1): 32–41, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10132  相似文献   

6.
The capability of an encapsulated phase change material (EPCM)‐based thermal energy storage (TES) system to store a large fraction of latent energy at high temperatures was examined. A 3‐dimensional simulation of a prototype heat exchanger was conducted employing sodium nitrate as the phase change material (PCM). The kω SST model was used to capture the turbulent flow of the HTF, while the melting front was tracked using the enthalpy‐porosity method. The results show that the use of metal deflectors yields a nearly constant heat transfer coefficient over the capsule's surface. Despite this, the presence of the void in the capsule and natural convection within the molten PCM influenced the storage characteristics of the system affecting the shape of the isotherms and melting front. Furthermore, the EPCM capsules consecutively undergo the same heat transfer starting from the capsule closest to the inlet. The EPCM capsules store 80% of the energy lost by the HTF. The 17.7 kg of sodium nitrate stores 14.5 MJ of energy where 20% of the energy stored is via latent heat. Of the energy released by the heat transfer fluid, 80% was absorbed by the EPCM capsules with the remaining energy going into the test section walls. A total of 14.5 MJ of energy was stored by the 17.7 kg of NaNO3, of which 20% is attributed to the latent heat. The fraction of energy stored as latent heat would be larger if a smaller operating temperature range was used. Thus, an EPCM‐based latent heat TES system is capable of storing a large fraction of the supplied energy and presents efficient means of storing thermal energy for high‐temperature applications. Additionally, the strong agreement between the numerical and experimental works demonstrates that the numerical methods employed can predict the behavior of an EPCM capsule not only within a single capsule but on the system scale as well. Therefore, the applied numerical methods can be used for further design and optimization of EPCM‐based latent heat TES systems.  相似文献   

7.
Phase change materials (PCMs) with suitable melting ranges for thermal energy storage applications are alkanes, paraffins, fatty acids, eutectic mixtures, and inorganic PCMs. Paraffinic hydrocarbons and fatty acids with low solubility in water are usually the preferred candidates. Pentadecane, which is an alkane hydrocarbon with the chemical formula C15H32, was used as PCM in this study. The pentadecane was microencapsulated with a poly(melamine‐urea‐formaldehyde (MUF)) shell for thermal energy storage. Pentadecane/poly(MUF) microcapsules were prepared by in situ polymerization method. The morphological analysis of pentadecane microcapsules was analyzed with scanning electron microscopy (SEM). Thermal properties of microcapsulated pentadecane were determined by differential scanning calorimetry (DSC). The results demonstrated that pentadecane/PUF microcapsules were prepared successfully, and they offer proper phase transition temperature range (8.7°C and 8.1°C) and heat enthalpy values (84.5 and ?88.2 kJ/kg) for thermal energy storage applications. According to the results, it was determined that pentadecane/poly(MUF) microcapsules have good potential for thermal energy storage applications.  相似文献   

8.
Thermal energy storage systems provide several alternatives for efficient energy use and energy conservation. Microcapsules of natural coco fatty acid mixture were prepared to be used as phase change materials for thermal energy storage. The coacervation technique was used for the microencapsulation process. Several alternatives for the capsule wall material were tried. The microcapsules were characterized according to their geometric profiles, phase transition temperatures, mean particle sizes, chemical stabilities, and their thermal cycling. The diameters of microcapsules prepared in this study were about 1 mm. Coco fatty acid mixtures have kept their geometrical profiles even after 50 thermal cycles for melting and freezing operations in temperature range from 22 to 34°C. It was found that gelatin+gum Arabic mixture was the best wall material for microencapsulating coco fatty acid mixtures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Latent heat thermal energy storage refers to the storage and recovery of the latent heat during the melting/solidification process of a phase change material (PCM). Among various PCMs, medium‐ and high‐temperature candidates are attractive due to their high energy storage densities and the potentials in achieving high round trip efficiency. Although a few review studies on high‐temperature PCMs have emerged in the past few years, the quantity, completeness, and accuracy of the presented data are relatively poor. Also, an efficient indexing methodology for retrieving useful PCM data is missing in the open literature. In this article, we created an up‐to‐date PCM database following a holistic review of the PCMs in medium‐ and high‐temperature applications over a temperature range of 100°C to 1680°C. Such effort then allows us to develop an accurate indexing tool for the fast selection of suitable PCM candidates and extraction of the related property data. More specifically, the created PCM database covers 496 entries of PCM materials, which are extracted from the scattered research works published during the year 1956 to 2017. The collected information includes both the basic thermo‐physical properties of PCMs (eg, melting temperature, heat of fusion, and thermal conductivity) and crucial design factors during construction and engineering phases (eg, energy storage density, volume expansion, liquid/solid densities, and cost). The reviewed PCMs comprise a wide variety of materials, including fluorides, chlorides, hydrates, nitrates, carbonates, metals and alloys, and other uncommon compounds and salts. In addition, the current work presents a brief review on high‐temperature latent heat thermal energy storage systems categorized into metallic and non‐metallic systems. The corrosivity and stability of PCMs, which are commonly ignored in previous studies, are also examined.  相似文献   

10.
A novel form‐stable phase change wallboard (PCW) was prepared for low‐temperature latent heat thermal energy storage by incorporating eutectic mixture of capric acid and stearic acid and gypsum wallboard. Thermal properties of form‐stable PCW were measured by DSC analysis. The form‐stable PCW has good thermal reliability with respect to the changes in its thermal properties after accelerated thermal cycling. Thermal performance test indicated that the use of such a type of PCW can decrease indoor air temperature fluctuation due to absorption of heat by the eutectic phase change material. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
通过实验初步研究了采用光管螺旋相变蓄热器替代传统水蓄热器的小型家用热泵冷凝热回收系统的性能,对相变蓄热和水蓄热的冷凝热回收过程进行了对比实验,分析并得到了两类冷凝热回收系统的性能参数及综合能效系数。实验数据表明:与水蓄热系统相比,光管螺旋相变蓄热器体积减小,并且系统运行较传统水蓄热工况下更加平稳,但存在传热效果较差、热回收率低的缺点,回收率仅为15%,系统综合能效系数2.9。可知,相变蓄热器的内部结构对系统综合能效系数影响很大。  相似文献   

12.
This paper presents a comprehensive study of encapsulated phase change materials (PCMs). In order to investigate some synthesis parameters, microencapsulated paraffin with gelatin/gum Arabic wall system was prepared by the complex coacervation method and the performance of these microcapsules was evaluated by optical microscopy and differential scanning calorimetry. Further investigations were carried out on the impact of physical parameters on the melting time by studying the constrained melting transformation of an encapsulated PCM in a spherical shell subjected to a constant temperature media. Results indicate successful production of PCM microcapsules with high melting enthalpy (116 kJ/kg), and the effects of diameter and thermal conductivity on melting time of PCMs were demonstrated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
相变储热因单位体积储热量大,储热和放热过程温度基本恒定等优点而成为目前研究的热点。相变过程中涉及固液两相间融化和凝固的传热问题,其储放热过程是一个复杂的非稳态相变过程。本文对高温相变储热换热装置进行换热特性研究,通过研究储热单元的换热特性,基于FLUENT软件,结合装置的设计参数和相变复合材料的物性参数,对相变储热系统储/放热过程中内部的温度分布、传热速率和储放热效率进行了数学建模及模拟分析,重点研究了不同传热流体速度对单元储/放热性能的影响规律。根据仿真结果,在相变储热装置的设计中,可选择合适的空气流速,以实现不同的散热功率及储放热时间,满足不同用户的用热需求。物理实验表明仿真结果偏差较小,可为高温相变储换热装置设计、优化等工作提供依据。  相似文献   

14.
Brines coming from salted lakes such as that at the Atacama desert in Chile produce by‐products or wastes which today are stored in the nearby from the production areas. Bischofite is one of those by‐products, and therefore, its composition may vary from batch to batch. Because bischofite has been identified as a good candidate to be used as phase change material (PCM) for latent heat thermal energy storage, the influence of the variation of bischofite composite with its main impurities in this potential used needs to be evaluated. The main impurities of bischofite are the cations sodium, potassium and lithium and the anions chloride and sulfate. The results of this investigation established that the presence of KCl and NaCl in bischofite (up to 5 wt%) does not affect its use as PCM, because its melting enthalpy and temperature do not vary significantly. It is interesting that small contents of LiCl in bischofite do not change significantly its melting enthalpy but decrease the melting temperature. Such change may enable the usage of this material as PCM in other applications at lower temperatures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, a theoretical approach is proposed for the prediction of time and temperature during the heat charge and discharge in the latent heat storage of phase changed materials (PCM). By the use of the average values of the mean specific heat capacities for the phase‐changed materials, analytical solutions are obtained and compared with the available experimental data in the literature. It is shown that decreasing the entry temperature of the working fluid from ?4 to ?15°C has a very dominant and strong effect on the PCM solidification time. The effect of the working fluid flow rate and the material of PCM capsules on the time for complete solidification and total charging is also investigated. The agreement between the present theoretical model results and the experimental data related to the cooling using small spheres and the heat storage using rectangle containers is very good. The largest difference between the present results and the experimental data becomes about 10% when the fluid temperature approaches the phase change temperature at high temperatures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Novel high‐temperature heat transfer fluids (HTFs) with incorporated phase change nanomaterials were synthesized and tested for heat transfer and thermal energy storage. The advanced thermal properties were achieved by preparing a nanofluid consisting of core/shell silica encapsulated tin (Sn/SiO2) nanoparticles dispersed in a synthetic HTF Therminol 66 (TH66) at loadings up to 5 vol%. Tin nanoparticles were synthesized by modified polyole reduction method followed by sol–gel silica encapsulation process. The measured increase in thermal conductivity of the nanofluid (~13% at 5 vol%) was in agreement with Maxwell's effective medium theory. Latent heat of phase change during melting of Sn core added ~11% increase to the volumetric thermal energy storage of the nanofluid when cycled in between 100°C and 270°C. The value could be further improved if thermal cycling is conducted in a narrower temperature range. The experimental results demonstrated dual functionality of the engineered nanofluids as desired for Concentrated Solar Power systems. Viscosity and stability of the nanofluids as well as thermal stability of core/shell nanomaterials) were investigated in a wide temperature range to obtain a perspective on any additional pumping power requirements for the nanofluid over the base fluid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
膨胀石墨基复合相变材料具有导热系数高,储能密度大以及相变过程无液体泄漏等优点,是近年来储能科学领域的研究热点.本文探讨了应用于储热系统的相变材料的性能及分类,并对膨胀石墨及其复合相变材料的制备方法进行了简要分析,最后综述了石蜡类,脂肪酸类,共晶混合物类,聚乙二醇以及乙酰胺等膨胀石墨基复合相变材料的国内外研究进展.  相似文献   

18.
In this study, an external melt ice‐on‐coil thermal storage was studied and tested over various inlet conditions of secondary fluid—glycol solution—flow rate and temperature in charging process. Experiments were conducted to investigate the effect of inlet conditions of secondary fluid and validate the numerical model predictions on ice‐on‐coil thermal energy storage system. The total thermal storage energy and the heat transfer rate in the system were investigated in the range of 10 l min ?1?V??60 l min ?1. A new numerical model based on temperature transforming method for phase change material (PCM) described by Faghri was developed to solve the problem of the system consisting of governing equations for the heat transfer fluid, pipe wall and PCM. Numerical simulations were performed to investigate the effect of working conditions of secondary fluid and these were compared with the experimental results. The numerical results verified with experimental investigation show that the stored energy rises with increasing flow rate a decreasing tendency. It is also observed that the inlet temperature of the fluid has more influence on energy storage quantity than flow rate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Nanofluids, particularly water‐based nanofluids, have been extensively studied as liquid–solid phase change materials (PCMs) for thermal energy storage (TES). In this study, nanofluids with aqueous ethylene glycol (EG) solution as the base fluid are proposed as a novel PCM for cold thermal energy storage. Nanofluids were prepared by dispersing 0.1–0.4 wt% TiO2 nanoparticles into 12, 22, and 34 vol.% EG solutions. The dispersion stability of the nanofluids was evaluated by Turbiscan Lab. The liquid–solid phase change characteristics of the nanofluids were also investigated. Phase change temperature (PCT), nucleation temperature, and half freezing time (HFT) were investigated in freezing experiments. Subcooling degree and HFT reduction were then calculated. Latent heat of solidification was measured using differential scanning calorimetry. Thermal conductivity was determined using the hot disk thermal constant analyzer. Experimental results show that the nanoparticles decreased the PCT of 34 vol.% EG solution but minimally influenced the PCT of 12 and 22 vol.% EG solutions. For all nanofluids, the nanoparticles decreased the subcooling degree, HFT, and latent heat but increased the thermal conductivity of the EG solutions. The mechanism of the improvement of the phase change characteristics and decrease in latent heat by the nanoparticles was discussed. The nanoparticles simultaneously served as nucleating agent that induced crystal nucleation and as impurities that disturbed the growth of water crystals in EG solution‐based nanofluids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Cascaded latent heat storage for parabolic trough solar power plants   总被引:6,自引:0,他引:6  
The current revival of solar thermal electricity generating systems (SEGS) unveils the still existing need of economic thermal energy storages (TES) for the temperature range from 250 °C to 500 °C. The TES-benchmark for parabolic trough power plants is the direct two tank storage, as it was used at the SEGS I plant near Barstow (USA). With the introduction of expensive synthetic heat transfer oil, capable to increase the operating temperature from former 300 °C up to 400 °C, the direct storage technology became uneconomical. Cascaded latent heat storages (CLHS) are one possible TES alternative, which are marked by a minimum of necessary storage material. The use of a cascade of multiple phase change materials (PCM) shall ensure the optimal utilization of the storage material.This paper reports experimental and numerical results from the investigation of cascaded latent heat storages with alkali nitrate salts like NaNO3, KNO3 and others more. The experiments were conducted with vertical shell and tube type heat exchanger devices under realistic operation parameters. The experimental results were used for a numerical model to simulate different CLHS configurations. Dymola/Modelica was used to conduct the simulation. The outcome of this work shows on the one hand, that the design of CLHS for this temperature range is more complex than for the temperature range up to 100 °C. And on the other hand, the low heat conductivity of available PCM is an obstacle which must be overcome to make full use of this promising storage technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号