首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
The behaviour of fire within a deep (high‐depth‐to‐height ratio) enclosure with various openings at one end has been studied experimentally. Sixteen fuel trays were placed within an 8.0m long × 2.0m wide × 0.6m high steel enclosure. The experiments confirmed previous smaller‐scale experiments, which showed that the fires in deep enclosures are strongly influenced by the ventilation and are not at all uniform throughout the depth of the enclosure. The severity of exposure of structural members is much more severe close to the ceiling near the front of the enclosure compared with the back of the enclosure. Based on the test data that can be found in this report, as well as other well‐known tests, a heat release rate–time–position model is proposed for fire development in deep enclosures. The same sets of test data are also used to evaluate other model predictions. Finally, a recommendation is made to choose a model based on the shape of the enclosure (i.e. deep, wide, square, etc.). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, cone calorimeter tests were conducted to investigate fire properties of interior materials (floor covering [FC], aluminum plate covered with paint [APCP], light diffuser [LD], and gel coat [GC]) used in low‐floor light‐rail trains. Ignition time (tig) of each material decreases with the increase of radiative heat flux. The decreasing order of the four samples by ignition time under the same radiative heat flux is LD > APCP > FC > GC. The heat release rate (HRR), peak value of HRR (PHRR), time from ignition to PHRR (tp), fire growth rate index (FIGRA), and fire growth index (FGI) rise with the increasing radiative heat flux. For the FC, LD, and GC, single HRR peak is observed in the HRR history while three peaks are observed for APCP. For PHRR, LD > FC > APCP > GC, while for tp, GC < FC < APCP < LD. Under most conditions, the FIGRA and FGI of the FC is the highest among the four materials. Results of this work are beneficial to evaluate fire hazard of low‐floor light‐rail train and determine the emphasis of fire prevention.  相似文献   

3.
Passenger vehicle fires present a significant fire hazard in enclosed car parks. Accordingly, this hazard is often used as a design fire scenario for the application of fire protection systems. Specific fire protection standards, like NFPA 88A:2019 and NFPA 502:2020 in the United States (US) or BS 7346-7:2013, NBN 21-208-2:2014, VDI 6019-1:2006, NEN 6098:2010 and ITB 493:2015 in Europe, provide varying requirements for car park fire protection. Car parks fire strategies, especially when smoke control systems are used, often make use of performance-based methods, in which fire growth (ie, heat release rate [HRR]) plays a fundamental role. The chosen HRR can influence the specification of car park construction and on smoke control system calculations. This article presents a review of 44 full-scale car fire tests together with Polish and British passenger car fire statistics from the last 8 years. Based on the collected data and the averaged tests, HRR values provided in this article could assist local authorities and stakeholders determine optimal fire safety design criteria for car parks.  相似文献   

4.
Electrical cable trays are used in large quantities in nuclear power plants (NPPs) and are one of the main potential sources of fire. A malfunction of electrical equipment due to thermal stress for instance may lead to the loss of important safety functions of the NPPs. The investigation of such fires in a confined and mechanically ventilated enclosure has been scarce up to now and limited to nuclear industry. In the scope of the OECD PRISME‐2 project, the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) conducted more than a dozen fire tests involving horizontal electrical cable trays burning either in open atmosphere or inside mechanically ventilated compartments to investigate this topic. A semi‐empirical model of horizontal cable tray fires in a well‐confined and mechanically ventilated enclosure was developed. This model is partly based on the approach used in FLASH‐CAT and on experimental findings from IRSN cables fire tests. It was implemented in the two‐zone model SYLVIA. The major features of the compartment fire experiments could then be reproduced with acceptable error, except for combustion of unburned gases. The development of such a semi‐empirical model is a common practice in fire safety engineering concerned with complex solid fuels.  相似文献   

5.
The heat release rate (HRR) of fuels has been described as the single important variable of fuels in fire hazard, and the HRR experimental measurement remains a key issue in fire science. A modified carbon‐dioxide generation (CDG) method, applying a three‐zone smoke model, is developed to predict the HRR of gas, liquid, and solid fuel fires. The three‐zone smoke model with three layers is determined by the vertical thermal stratification, and their physical thermal properties are computed. The application of modified method on typical gas fuel, liquid fuel, and simple solid‐fuel fires is verified. The prediction accuracy is examined quantitatively by the cosine similarity comparison of predicted results with the experimental data. In addition, the ventilation effects on the predicted results are also explored. Results show that the application of three‐zone model improves the HRR prediction accuracy, because it can accurately capture the mixing behavior from the upper layer to the lower layer. The effect of ventilation on modified CDG method is positive as the ventilation enhances the smoke mixing and the smoke distribution in each layer is relatively uniform.  相似文献   

6.
Fire safety analysis is a major issue for nuclear power plants (NPPs) in the context of deterministic safety assessments as well as of probabilistic safety analyses. Oil reservoirs and cables represent major fire loads. Therefore, simulations of oil and cable fires are of interest for quantifying the risk of such internal hazards in NPPs. To investigate the applicability of lumped parameter (LP) modelling, validations against fire experiments are required. In this way, results obtained with the LP code COCOSYS for simulations of oil and cable fire experiments conducted in the OECD PRISME 2 Project are presented. The PRISME 2 VSP (vertical smoke propagation) tests involving oil fires in a confined and mechanically ventilated facility were used to assess the ability of the LP code to simulate smoke propagation through a horizontal opening from the fire compartment to a compartment on top of it. As it was already identified in the “International Collaborative Fire Modelling Project (ICFMP),” this type of opening might cause problems in fire simulations, particularly for zone or LP fire models. In these simulations, attention has been paid to the coupling between the fire and the surrounding environment due to the decrease of oxygen concentration. Furthermore, different cable materials have been tested in the PRISME 2 CORE (completing and repeating) test campaign. By simulating the CFS‐3 (cable fire spreading) test with confined underventilated conditions, the applicability of the COCOSYS cable fire model with input parameters deduced from open atmosphere fire tests (CORE‐2) was analysed. Results show that the applicability of a LP fire model to predict the pyrolysis rate is partly limited for both oil and cable fires, in confined environment. However, simulations with prescribed pyrolysis rates show encouraging results in good agreement with the experimental data and underline the capability of the LP code COCOSYS to simulate the interaction between the thermal hydraulics inside compartments and the fire source.  相似文献   

7.
This paper presents the results of an experimental investigation on the fire retardancy properties of glass fibre–reinforced polyester (GFRP) composites with bisphenol‐A vinylester and isophthalic polyester as matrices and low electrical conductivity E‐glass fibres as reinforcement. The fire protection systems tested were alumina trihydrate (ATH), decabromodiphenyl ether (DBDE), and antimony trioxide (Sb2O3). A mass loss cone calorimeter was used to obtain the properties of heat release rate (HRR), peak HRR, total heat released, total mass loss, time to ignition, and time of combustion. Moreover, limiting oxygen index (LOI), UL‐94, and glow‐wire tests were also performed. The fire tests were carried out in order to investigate if the combination of ATH and DBDE could have “additive,” “antagonistic,” or “synergistic” effects on the flame retardant properties of the GFRP studied in this work. In addition, the influence of the ATH content variation on flame retardant properties was also evaluated. The results indicate that the sole addition of ATH at 47.7 phr could lead to the complete inhibition of the composites ignition, while the materials containing DBDE exhibit ignition and flame propagation in the cone calorimeter test.  相似文献   

8.
This paper investigates the effects of brominated and halogen‐free fire retardants on the fire performance of glass‐fiber (GF) reinforced poly(butylene terephthalate) (PBT). Brominated polystyrene was used as the brominated fire retardant, whereas aluminum diethylphosphinate with/without nanoclay as halogen‐free fire retardants (HFFRs). Tests were conducted by using thermogravimetric analysis, limiting oxygen index (LOI), UL94, and the cone calorimeter. Thermogravimetric analysis results show that decomposition of GF plus PBT (PBT + GF) starts earlier in the presence of all fire retardants (FRs). In the cone calorimeter, all FRs reduce significantly the heat release rate (HRR) compared with PBT + GF, with brominated polystyrene achieving lowest HRR primarily because bromine released in the pyrolysis gases inhibits combustion. Brominate polystyrene does not, however, affect the mass loss rate. Aluminum diethylphosphinate alone has significant effects on reduction of both HRR and mass loss rate, which become considerably more when combined with nanoclay. It was also found that the combustion efficiency of the brominated polystyrene compound is much lower than that of HFFRs, indicating that brominated polystyrene has higher gas phase flame retardant efficiency compared with HFFRs because the bromine radicals released during degradation of brominated polystyrene effectively quench the chemical reactions of the pyrolysis gases due to degradation of PBT.  相似文献   

9.
Knowledge about the heat release rate (HRR) is essential for studying tunnel fires. The standard method in ISO 9705 is widely applied to calculate the HRR of combustion by measuring the consumption of oxygen in a fire. However, the studies of HRR measurement in full‐scale tunnel fires are rare because of the complication and costs of large experiments. This paper presents a system based on the principle of oxygen consumption calorimetry for the measurement of HRR and total heat release (THR) of full‐scale fires in tunnels. A total of 22 fire experiments are performed in a large‐scale ventilated testing metro tunnel with dimension of 100.0 m × 5.5 m × 5.5 m to validate the reliability and effectiveness of this system. Firstly, four oil spray fire tests are conducted with nozzle flow of 106 L/h at (1 ± 0.1) MW HRR to calibrate the instrumentation. Then, 18 full‐scale fire tests using square diesel pools at five sizes (0.5, 1.0, 2.5, and 5.0 m2) and wood cribs as fire sources are carried out for the measurement of HRR and THR. Results provided by the comparison between the measured HRR and THR values of the fire tests and the theoretically calculated ones show that our system works effectively in the HRR measurement of full‐scale fires in tunnels.  相似文献   

10.
Our present paper summarizes the shortcomings in the current fire‐resistant design of oversized steel structures and proposes a method for overall stability analysis of steel structures in the event of fire. The Fire Dynamics Simulator (FDS) software platform–based large‐eddy simulation technology can accurately reflect the environment in a fire scenario and correctly predict the spatial–temporal change in the smoke temperature field within an oversized space. Adopting the FDS software and finite element structural analysis (ANSYS) coupling can fundamentally overcome the natural defect of adopting the International Organization for Standardization (ISO) standard curve (or other indoor homogeneous temperature increase curves) that substitutes a point for the overview of a field. They reflect the structural additional internal force and internal force redistribution incurred by the gradient temperature difference of the spatial–temporal changing nonhomogeneous temperature field and both theoretically and technically realize the analysis of structural heat transfer and mechanical properties in a natural fire. Furthermore, a modified model to predict the steel temperature curve in localized fire is also proposed. The localized fire in large spaces can be treated as a point fire source to evaluate the flame thermal radiation to steel members in the modified model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Although double‐skin façade (DSF) is an environmental‐friendly architectural feature, its fire behaviour is a deep concern. The interior glass system including the glass pane, metal frame and associated accessories will be hotter than the exterior glass system as demonstrated by earlier studies. The glass pane above the fire room will be broken to spread flame into the upper compartment. Aprons are proposed to protect the air cavity of DSF in a way similar to those outside a single‐skin façade. In this paper, the effect of aprons in protecting against fire spread from an underlying compartment to the compartments above by preventing glass breakage of the inner glass pane was studied. Fire and smoke from a post‐flashover room fire adjacent to the DSF would be trapped in the air cavity between the two glass panes. Spreading of hot gases with different apron widths was studied by numerical simulations with CFD first. Fire environment with and without breaking the apron immediately above the fire room was studied. Full‐scale burning tests on part of an experimental DSF rig were then carried out to demonstrate the performance of horizontal apron in the DSF rig of 6 m tall and air cavity depth of 2 m with different apron widths. All demonstrated that providing apron is appropriate in protecting DSF fires. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A practical CFD method is presented in this study to predict the generation of toxic gases in enclosure fires. The model makes use of local combustion conditions to determine the yield of carbon monoxide, carbon dioxide, hydrocarbon, soot and oxygen. The local conditions used in the determination of these species are the local equivalence ratio (LER) and the local temperature. The heat released from combustion is calculated using the volumetric heat source model or the eddy dissipation model (EDM). The model is then used to simulate a range of reduced‐scale and full‐scale fire experiments. The model predictions for most of the predicted species are then shown to be in good agreement with the test results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
A series of reduced‐scale experimental fires was conducted to study the characteristics of fire induced vent flows in a reduced‐scale post‐flashover fire compartment with a door opening and a roof opening. The fire source was a heptane pool fire near the wall furthest from the door vent. In the study, the roof vent opening area was systematically varied between experiments and the characteristics of vent flows through the door opening are presented as a function of the roof vent opening area. The experimental results show that the mass flow rate of air into the compartment increases linearly as the size of roof vent opening increases. Analytical vent flow calculations based on the hydrostatic pressure difference between two quiescent environments are presented for a post‐flashover fire compartment with both horizontal and vertical openings. The calculated results are in good agreement with the experimental measurements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
This work investigates how the inflow, the burning and the outflow develop in a corridor open to one end having a fire at either the closed or open end. The situation of a corridor fire having a fire source at the close end is a situation similar to a tunnel having a fire source at the centre of the tunnel without ventilation. A gaseous propane burner is used to produce the fire at a prescribed fuel flow rate in a long corridor of aspect ratio up to 6:1 having a rectangular cross section and varying door‐like openings. Gas temperatures using thermocouple trees, heat fluxes in the corridor and on its façade, flame heights of emerging flames and total heat release rates (HRRs) are measured as the fuel flow rate of propane increases gradually and linearly with time to a preset maximum value. For over‐ventilated conditions, the flames remain near the fire source at the closed end of the corridor. Unexpectedly, it is established for under‐ventilated conditions that the inflow of air is not affected by the aspect ratio of the corridor or the location of the burner in the corridor and that the vertical distribution of gas temperatures inside the enclosure is nearly uniform with height everywhere. In addition, the flame heights and heat fluxes on the façade are the same as those for aspect ratios of the corridor from 1:1 to 3:1 examined in previous work. Moreover, as the conditions changed from over‐ventilated to under‐ventilated conditions, the flames migrated in a ghostly manner from the closed end to the open end of the corridor as soon as under‐ventilated conditions were established. The speed of migration of the flames from the back to the front has also been inferred from the thermocouple tree measurements, which also indicate that the flow conditions ahead and after the passing of the front are changed. These results can be applied to interpret some of the observed behaviours of fires in long corridors or tunnels without ventilation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
To solve the limitation of the fire test in high‐altitude areas only detecting a limited number of low‐pressure environments, in this paper, appropriate modifications of the FDS source codes were made to generate a new simulator program for low‐pressure applications. Standard fire experiments with different counts (1, 2, 18, and 27) of cardboard boxes were numerically simulated under different pressure levels (101, 90, 75, and 64 kPa). The computation data show consistent trends with the experimental results obtained in the low‐pressure tank at Lang Fang. Furthermore, the simulation results have been examined to show typical quantitative relationships: (a) The peak mass burning rate divided by the fire base dimension is correlated with the product of the pressure squared and the combustible characteristic length cubed. The exponential indices for the 1‐box fire, 18‐box fire, and 27‐box fire are 0.31, 0.29, and 0.29, respectively. (b) The heat release rate and mass burning rate show a good linearity at each fixed environmental pressure. In conclusion, the modified FDS is validated to work well under low‐pressure conditions, which can provide a receivable means to conduct low‐pressure fire simulation and analysis.  相似文献   

16.
The present work addresses the application of a water spray system in case of a fire event in large‐scale experiments for nuclear safety issues. It focuses on the interaction between a water spray system and a stratified smoke layer due to a pool fire in a mechanically ventilated enclosure. This study is supported by a set of four large‐scale tests and one numerical simulation with a 3D CFD software, named CALIF3S/ISIS, and developed by the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN). The modelling used in this paper is based on an Eulerian‐Lagrangian approach. The fire tests are performed in a 165 ?m3 mechanically ventilated single room. The fire is a lubricant oil pool fire of about 400 kW. The ventilation flow rate is 2550 m3.h?1 and corresponds to a renewal rate of 15.5 h?1. The spray nozzles are deluge and sprinkler type. The test parameters are the water flow rate, the time of activation, and the duration of activation. Based on the large‐scale experiments and the numerical simulation, four typical physical mechanisms have been enlightened. The first one corresponds to the cooling of the gas phase that is the straightforward consequence of the heat transfer exchange between the water droplets and the surrounding gas. The second effect is the process of gas mixing and homogenization induced by the water spraying system. The gas concentrations (O2, CO2) in the upper and lower parts of the room tend to the same level. The third effect is the significant increase of the fire heat release rate (HRR), up to 25 %, when the water spray is activated. Then, the last noteworthy effect is the occurrence of gas pressure peaks when the water spray is activated or shut off, consequence of the sudden change of the gas temperature. The processes of gas cooling and fire HRR increase are showed to be the main causes of these variations of gas pressure.  相似文献   

17.
This research deals with the experimental determination of the heat release rate (HRR) of n‐heptane pool fire at different pressure conditions based on oxygen consumption method. The method, initially developed for open atmosphere fires, is modified for pool fires in ventilated chamber under different pressure conditions. The calculation equation of the HRR with consideration of ambient pressure is presented. The experiments are performed in the large‐scale ventilated altitude chamber of size 2 × 3 × 4.65 m under series of pressure, 24, 38, 64, and 75 to 90 kPa. Based on the experimental data, the effects of pressure on the mass burning rate and HRR are discussed; meanwhile, the calculation method of HRR is verified. The results show that the mean mass burning rate at the steady burning stage increases exponentially with pressure as , with α = 0.68. The maximum HRR increases from 27 to 63 kW as the pressure rises from 24 to 90 kPa. It is concluded that the ambient pressure has a significant effect on the fire HRR and will further influence on other fire parameters.  相似文献   

18.
This paper describes and validates by comparisons with tests a one‐zone model for computing temperature of fully developed compartment fires. Like other similar models, the model is based on an analysis of the energy and mass balance assuming combustion being limited by the availability of oxygen, ie, a ventilation‐controlled compartment fire. However, the mathematical solution techniques in this model have been altered. To this end, a maximum fire temperature has been defined depending on combustion efficiency and opening heights only. This temperature together with well‐defined fire compartment parameters was then used as a fictitious thermal boundary condition of the surrounding structure. The temperature of that structure could then be calculated with various numerical and analytical methods as a matter of choice, and the fire temperature could be identified as a weighted average between the maximum fire temperature and the calculated surface temperature of the surrounding structure as a function of time. It is demonstrated that the model can be used to predict fire temperatures in compartments with boundaries of semi‐infinitely thick structures as well as with boundaries of insulated and noninsulated steel sheets where the entire heat capacity of the surrounding structure is assumed to be concentrated to the steel core. With these assumptions, fire temperatures could be calculated with spreadsheet calculation methods. For more advanced problems, a general finite element solid temperature calculation code was used to calculate the temperature in the boundary structure. With this code, it is possible to analyze surrounding structures of various kinds, for example, structures comprising several materials with properties varying with temperature as well as voids. The validation experiments were accurately defined and surveyed. In all the tests, a propane diffusion burner was used as the only fire source. Temperatures were measured with thermocouples and plate thermometers at several positions.  相似文献   

19.
The amount of atmospheric hydrogen chloride (HCl) within fire enclosures produced from the combustion of chloride‐based materials tends to decay as the fire effluent is transported through the enclosure due to mixing with fresh air and absorption by solids. This paper describes an HCl decay model, typically used in zone models, which has been modified and applied to a computational fluid dynamics (CFD)‐based fire field model. While the modified model still makes use of some empirical formulations to represent the deposition mechanisms, these have been reduced from the original three to two through the use of the CFD framework. Furthermore, the effect of HCl flow to the wall surfaces on the time to reach equilibrium between HCl in the boundary layer and on wall surfaces is addressed by the modified model. Simulation results using the modified HCl decay model are compared with data from three experiments. The model is found to be able to reproduce the experimental trends and the predicted HCl levels are in good agreement with measured values. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Water‐mists are emerging as an effective agent for the suppression of fires. However, the mechanisms of suppression are complex and the behaviour of individual water droplets in a smoke layer generated by fires must be quantified. This study investigates the behaviour of individual droplets injected from a nozzle into a hot air environment induced by a room fire. A semi‐empirical model has been developed based on the conservation of mass, momentum and energy to evaluate the heat and mass transfer phenomena in an air‐water droplet system. The model has considered the effect of change of momentum of an evaporating droplet. A forward finite difference approach is applied to solve the governing time dependent ordinary differential equations. The droplets are considered to be ‘lumped mass’ and variable thermo‐physical properties of water and air and the change of Reynolds number of the droplets, due to the change of their diameter and velocity are considered. The effect of high evaporation rate on the mass and heat transfer coefficient and the contribution of radiation emanating by a flame and the surrounding boundary walls are also considered in the model which were not taken into account in the previous studies. Experimental data on terminal velocity and adiabatic saturation temperature are used to validate and verify the model. The validation and verification indicate that the proposed model predicted the terminal velocity within 4% of the experimental data and predicted the saturation temperature within 5% of the adiabatic saturation temperature. This semi‐empirical model is also used as a tool to validate a more comprehensive computational fluid dynamics (CFD) based tool, Fire Dynamics Simulator (FDS). It is found that FDS results agree well with the results of the proposed model. Furthermore, the proposed model can be used to evaluate the temperature, velocity, diameter and other physical properties of a droplet travelling through a layer of hot air. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号