首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this letter, we propose an efficient power-saving mechanism using paging of cellular networks for WLAN in heterogeneous wireless networks, where WLAN interface is turned off during idle state without any periodic wake-up in order to save power consumption while at the same time, the existing paging of cellular network is utilized in place of beacons in WLAN. For the proposed mechanism, the mean power consumption is investigated via analytical and simulation results.  相似文献   

2.
Ensuring quality of service (QoS) for the mobile users during vertical handover between IEEE 802.11 wireless local area networks (WLAN) and data network provided by Ultramodern Telecommunication Systems (UMTS) is one of the key requirements for seamless mobility and transfer of existing connections from one network to another. QoS fulfillment is a complex problem and requires participation of both the mobile users as well as the connection networks. The QoS assurance criteria for existing connections can be affected by fluctuations of data rates when a user moves from the high speed WLAN network to the low speed UMTS network, even in the presence of another WLAN network in its vicinity. This can happen if the alternate WLAN network is highly loaded. Therefore handover from a high speed network to a low speed network should be avoided, whenever possible. This paper proposes a QoS based handover procedure that prioritizes the existing connection over the new connections so that rate fluctuations due to handover can be avoided if there exist another WLAN network in the range of the mobile user. Whenever the possibility of handover is detected, a pre-handover bandwidth reservation technique is used to reserve bandwidth at the alternate WLAN networks to avoid QoS degradation. The proposed scheme is implemented in Qualnet network simulator and the performance is analyzed and compared with traditional handover techniques.  相似文献   

3.
The integration of cellular and VoIP over WLAN (VoWLAN) systems recently has attracted considerable interest from both academia and industry. A cellular/VoWLAN dual-mode system enables users to access a low-cost VoIP service in a WLAN hotspot and switch to a wide-area cellular system without WLANs. Unfortunately, cellular/VoWLAN dual-mode mobiles suffer the power consumption problem that becomes one of the major concerns for commercial deployment of the dual-mode service. In this study, we present a novel power saving mechanism, called PIANO (paging via another radio), for the integration of heterogeneous wireless networks, and further apply the proposed methods to implement a cellular/VoWLAN dual-mode system. Based on the proposed mechanisms, a dual-mode mobile can completely switch off its WLAN interface, only leaving the cellular interface awake to listen to paging messages. When a mobile receives a paging message from its cellular interface, it wakes up the WLAN interface and responds to connection requests via WLAN networks. Therefore, a dual-mode mobile reduces the power consumption by turning off the WLAN interface during idle, and can also receive VoWLAN services. Measurement results based on the prototype system demonstrate that the proposed methods significantly extend the standby hours of a dual-mode mobile.  相似文献   

4.
The complementary characteristics of cellular networks and wireless local area networks (WLANs) make it attractive to integrate these two technologies. In this integrated heterogeneous environment, mobile stream control transmission protocol (MSCTP) is ideal to support vertical handover (VHO) between them by enabling a mobile client to freely switch between IP addresses acquired in different networks. In this paper, we show that the MSCTP-based VHO scheme suffers from poor throughput performance during WLAN to cellular forced VHOs. We propose a novel error recovery scheme called Sending-buffer Multicast-Aided Retransmission with Fast Retransmission (SMART-FRX) to improve performance during VHO by multicasting the buffered and new data over both WLAN and cellular links when handover losses occur. In addition, we propose a new analytical model for SCTP that takes into account the congestion window, the round trip time, the slow-start and congestion avoidance processes. By comparing numerical results from the proposed analytical model with simulation results, we demonstrate that our analytical model is able to predict the SCTP throughput accurately, with or without the SMART-FRX scheme. The analytical model provides a useful tool that can be extended to study the performance of SCTP in other applications. Analytical and simulation results show that the proposed SMART-FRX scheme can improve the SCTP throughput performance significantly in WLAN to cellular forced VHO situations.  相似文献   

5.
In order to increase the capacity of wireless communication networks with minor changes and low cost, internetworking between cellular networks and wireless local area networks (WLANs) is considered as an attractive solution. In the internetworking of cellular networks and WLANs, a cost‐efficient vertical handover mechanism is required for seamless service provision. In this paper, we propose a cost‐efficient vertical handover mechanism for the packet‐based cellular networks and WLAN internetworking, where HMIPv6 and IEEE 802.21 are complementarily integrated to optimize the handover procedures. To design the mechanism, we introduce pre‐binding update and hierarchical packet forwarding concepts which can reduce handover signaling cost and delay. A mathematical model for handover rates and costs is proposed in order to analyze the proposed mechanism. In performance evaluation, we investigate how various factors affect handover rates and costs, and compare the proposed mechanism against the conventional mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The integration of wireless local area network (WLAN) hotspot and the 3G cellular networks is imminently the future mode of public access networks. One of the key elements for the successful integration is vertical handoff between the two heterogeneous networks. Service disruption may occur during the vertical handoff because of the IP layer handoff activities, such as registration, binding update, routing table update, etc. In this paper, the network interface switching and registration process are proposed for the integrated WLAN/cellular network. Two types of fast vertical handoff protocols based on bicasting and non‐bicasting supporting real‐time traffic, such as voice over IP, are modeled. The performance of a bicasting based handoff scheme is analyzed and compared with that of fast handoff without bicasting. Numerical results and the simulation are given to show that packet loss rate can be reduced by the bicasting during handoff scheme without increasing bandwidth on both wireless interfaces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
In heterogeneous vehicular networks, the most challenging issue is obtaining an efficient vertical handover during the vehicle roaming process. Efficient network selection process can achieve satisfactory Quality-of-Service for ongoing applications. In this paper, we propose an Intelligent Network Selection (INS) scheme based on maximization scoring function to efficiently rank available wireless network candidates. Three input parameters were utilized to develop a maximization scoring function that collected data from each network candidate during the selection process. These parameters are: Faded Signal-to-Noise Ratio, Residual Channel Capacity, and Connection Life Time. The results show that the proposed INS scheme is more efficient at decreasing handover delays, End-to-End delays for VoIP and Video applications, packet loss ratios as well as increasing the efficiency of network selection processes in comparison with the state of the arts.  相似文献   

8.
With the development of wireless technologies, video streaming services over heterogeneous wireless networks have become more popular in recent years. Video streaming schemes for heterogeneous networks should consider vertical handover in which the link capacity is varied significantly, because the quality experienced for a video streaming service is affected by the network status. When a vertical handover occurs, an abrupt bandwidth change and substantial handover latency lead to bursty packet loss and discontinuity of the video playback. In this paper, we propose a handover-aware video streaming scheme to provide seamless video streaming services over heterogeneous wireless networks. The proposed scheme adjusts its sending rate and the quality level of the transmitted video streams according to the significant bandwidth variation that occurs in a vertical handover. To expedite the response to the bandwidth variation due to a handover, our scheme uses an explicit notification message that informs the streaming server of a client's handover occurrence. In order to evaluate the performance, we use a simulation environment for a vertical handover between wireless local area networks and cellular networks. Through the simulation results, we prove that our scheme improves the experienced quality of video streaming in vertical handovers.  相似文献   

9.
Hybrid coupling scheme for UMTS and wireless LAN interworking   总被引:1,自引:0,他引:1  
We propose a hybrid coupling scheme to support interworking between UMTS and WLAN networks. Under the Tight-coupled system, it is expected that WLAN users can also use UMTS services with guaranteed QoS and seamless mobility. However, the interworking is problematic. The capacity of UMTS core network nodes cannot accommodate the bulky data traffic from WLAN, since the core network nodes are designed to handle the small-sized data of circuit voice calls or short packets. The proposed coupling scheme differentiates the data paths according to the type of the traffic and can accommodate traffic from WLAN efficiently, with guaranteed QoS and seamless mobility. We compare the handover procedures of the proposed coupling strategy with those of the loose and tight coupled schemes. In addition, we analyze the delay based on signaling costs during vertical handover. It is shown that the handover latency decreases when the UMTS and WLAN are coupled in the proposed way.  相似文献   

10.
In heterogeneous wireless network environment, wireless local area network (WLAN) is usually deployed within the coverage of a cellular network to provide users with the convenience of seamless roaming among heterogeneous wireless access networks. Vertical handoffs between the WLAN and the cellular network maybe occur frequently. As for the vertical handoff performance, there is a critical requirement for developing algorithms for connection management and optimal resource allocation for seamless mobility. In this paper, we develop a mathematical model for vertical handoff decision problem, and propose a multi-objective optimization immune algorithm-based vertical handoff decision scheme. The proposed scheme can enable a wireless access network not only to balance the overall load among all base stations and access points but also maximize the collective battery lifetime of mobile terminals. Results based on a detailed performance evaluation study are also presented here to demonstrate the efficacy of the proposed scheme.  相似文献   

11.
The integration of wireless local area networks (WLANs) and third generation (3G) cellular networks has been recently a subject of great interest, mainly aimed at augmenting cellular networks with high‐rate data services by WLANs in hotspots. The complementary characteristics of 3G cellular networks and 802.11 WLANs are expected to offer the best of both technologies. On the other hand, the drastically different characteristics of both networks could be a serious obstacle to providing seamless mobility in the integrated WLAN and cellular networks. In particular, mobile users suffer from a drastic decrease in data rate after a vertical handoff from a WLAN to a 3G cellular network. However, current TCP congestion control cannot adapt to the change in the data rate after the vertical handoff, resulting in significant throughput degradation. Thus, we propose a novel TCP scheme to enhance the throughput when a vertical handoff occurs from a WLAN to a cellular network. For the proposed scheme, the throughput performance is investigated via analytic modeling and simulation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Nowadays many manufacturers are building mobile devices with multiple interfaces. Thus, users have access to different types of wireless access networks, which often, as for WLAN and cellular systems, coexists independently. The challenge is to make such multiple access networks to cooperate to have ubiquitous access and enhanced user quality of service. In this paper we present a scheme to allow inter-technology mobility by the introduction of an overlay network, which works on top of current (and future) networks. The proposed architecture controls all the aspect related to the mobility management: mobile node localization, handover decision and execution. The approach is distributed: it is the mobile node that decides which network to use, based on the offered service quality and the cost of the communication of the available networks, and triggers the handover execution directly to the corresponding host, using optimized SIP-based procedures. The overlay network copes with the mobile node localization. We implemented our solution in the laboratory to prove its validity and to test performance using real equipment. We also simulated the scheme using ns-3 to extend the evaluation to large scale deployments. In both test environments, our solution demonstrates high accurateness in selecting the network with the best quality as well as in supporting seamless vertical handover.  相似文献   

13.
A new method to support UMTS/WLAN vertical handover using SCTP   总被引:6,自引:0,他引:6  
This article proposes a new method to facilitate seamless vertical handover between wide area cellular data networks such as UMTS and WLANs using the stream control transmission protocol (SCTP). The multihoming capability and dynamic address configuration extension of SCTP are applied in UMTS/WLAN overlay architecture to decrease handover delay and improve throughput performance. Unlike techniques based on mobile IP or session initiation protocol, the SCTP-based vertical handover scheme does not require the addition of components such as home/foreign agents or a SIP server to existing networks. Therefore, the proposed scheme provides a network-independent solution preferred by service providers. Performance evaluations are presented to demonstrate the effectiveness of the proposed scheme.  相似文献   

14.
The incorporation of wireless local area networks (WLANs) into existing cellular networks as supplementary access technologies has become an issue of great interest. However, vertical handover (VHO), which allows users to roam between a WLAN and a cellular network, causes an abrupt change in certain link characteristics such as the round trip time and data rate. Owing to such changes, reordering problem and premature timeout occur and trigger unnecessarily fast retransmission during VHO, causing throughput degradation. Thus, we propose a new transmission control protocol (TCP) mechanism, which resolves the reordering problem by suppressing unnecessary retransmission caused by spurious duplicate acknowledgments (dupacks) incurred because of the reordering problem, and prevents premature timeout by employing an adaptive retransmission timer. We analytically investigate the throughput of our proposed TCP scheme. The numerical and simulation results show that our proposed TCP performs better in terms of throughput than other schemes appearing in the literature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The key purpose for seamless mobility and service continuity between heterogeneous wireless networks is the handover. Vertical handover management is one of key challenges in such environment. To deal with some of these challenges, an IEEE 802.21 media independent handover (MIH) framework has been standardized. The main purpose of this standard is to offer a general interface for the handover by abstracting the link layer intelligence to higher layers. However, there still exist a number of limitations in MIH architecture. In this paper, a new architecture of improved MIH is presented to perform vertical handover between wireless heterogeneous networks. We focused on interworking architecture between wireless local area network and long term evolution advanced network with the use of MIH signaling to define an efficient vertical handover. A performance analysis model for the proposed MIH‐based vertical handover is derived. Analysis results show that the proposed method can be easily deployed in present multimedia service networks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
异构网络无缝融合是未来网络发展的趋势,异构网间的垂直切换则是实现网络无缝融合的关键技术之一。本文针对CDMA2000 Ev-Do网络与WLAN的特点,提出基于移动IP的无缝融合网络结构,并在此基础上提出基于WLAN信号强度的垂直切换方法。  相似文献   

17.
To provide wireless Internet access, WiFi networks have been deployed in many regions such as buildings and campuses. However, WiFi networks are still insufficient to support ubiquitous wireless service due to their narrow coverage. One possibility to resolve this deficiency is to integrate WiFi networks with the wide‐range WiMAX networks. Under such an integrated WiMAX and WiFi network, how to conduct energy‐efficient handovers is a critical issue. In this paper, we propose a handover scheme with geographic mobility awareness (HGMA), which considers the historical handover patterns of mobile devices. HGMA can conserve the energy of handovering devices from three aspects. First, it prevents mobile devices from triggering unnecessary handovers according to their received signal strength and moving speeds. Second, it contains a handover candidate selection method for mobile devices to intelligently select a subset of WiFi access points or WiMAX relay stations to be scanned. Therefore, mobile devices can reduce their network scanning and thus save their energy. Third, HGMA prefers mobile devices staying in their original WiMAX or WiFi networks. This can prevent mobile devices from consuming too much energy on interface switching. In addition, HGMA prefers the low‐tier WiFi network over the WiMAX network and guarantees the bandwidth requirements of handovering devices. Simulation results show that HGMA can save about 59– 80% of energy consumption of a handover operation, make mobile devices to associate with WiFi networks with 16–62% more probabilities, and increase about 20–61% of QoS satisfaction ratio to handovering devices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
未来网络的发展趋势是各种无线接入网络共存的异构网络环境,而垂直切换技术是融合多个异构接入网络的关键技术之一,垂直切换包括三个阶段,即系统发现、切换决策和切换执行。文中主要研究了基于上下文感知的垂直切换判决策略,并与移动垂直切换技术相结合,实现了WLAN/UMTS网络间的垂直切换,通过仿真表明该方法在吞吐量和切换时延方面都得到改善。  相似文献   

19.
Load balancing for cellular/WLAN integrated networks   总被引:8,自引:0,他引:8  
The interworking between heterogeneous third-generation cellular networks and wireless local area networks is one promising evolution approach to fourth-generation wireless networks, which can exploit the complementary advantages of the cellular network and WLANs. Resource management for the 4G-oriented cellular/WLAN integrated network is an important open issue that deserves more research efforts. In this article we present a policy framework for resource management in a loosely coupled cellular/WLAN integrated network, where load balancing policies are designed to efficiently utilize the pooled resources of the network. A two-phase control strategy is adopted in the load balancing policies, in which call assignment is used to provide a statistical quality of service guarantee during the admission phase, and dynamic vertical handoff during the traffic service phase is used to minimize the performance variations. Numerical results are presented to demonstrate that the proposed load balancing solution achieves significant performance improvement over two other reference schemes  相似文献   

20.
The convergence of multitude radio access networks forming a cluster of seamless heterogeneous wireless environment has made the wireless communication industry meet the paradigm of always best connected, where various mobile devices are able to access numerous types of applications and services. However, achieving such landmarks could not be possible without difficulties which this paper tries to highlight some of the technical challenges underlying seamless vertical handover. It provides a general overview of the mobility management process including a brief on multi-homing mobility protocol and focuses on vertical handover decision making techniques, hi ghlighting some radio interface standar and analysed some handover approaches. The paper proposes fast intelligent inter-layer network selection as a new handover approach to select the best network among the candidate networks, where Quality of Service, handover delay and improved data bit rates are set to be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号