首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein is an important component of grain which affects the technological properties of durum wheat. It is known that the amount and composition of protein can influence dough rheology and pasta quality but the influence of the major classes of protein is not well documented. The influence of the various gluten components on dough and pasta properties was investigated. The protein composition of durum semolina was altered by either adding gluten fractions to a base semolina or preparing reconstituted flours with varying protein composition. The effects on semolina dough rheology and spaghetti texture were measured. Published methods to isolate relatively pure quantities (gram amounts) of glutenin, gliadin, high molecular and low molecular weight glutenin subunits were evaluated and modified procedures were adopted. Reconstituted flours with additional glutenin increased dough strength while additional gliadin and LMW‐GS decreased strength. These changes did not impact on spaghetti texture. Results from using the addition of protein fractions to a base semolina showed that gluten and glutenin addition increased the dough strength of a weak base semolina while gliadin addition weakened the base dough further. Addition of HMW‐GS greatly increased dough strength of the base while addition of LMW‐GS greatly reduced dough strength. Again, these affects were not translated into firmer pasta. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
Durum breeders use a range of techniques in the development of new cultivars. An important selection criterion is the rheological properties of semolina dough and durum wheat breeders use this criterion in the development of new cultivars using a range of techniques. Because of the need to process large numbers of genotypes encountered in breeding programs, methods that are inexpensive, rapid, require small amounts of sample and that correlate with semolina quality are desirable. Using breeding material, this study investigated the relationship between the glutenin subunit composition and two traditional tests of gluten strength, gluten index (GI) and mixograph. Two sample sets of durum wheat breeding lines and cultivars, one grown in Canada (n = 229) and the other grown in Australia (n = 139) were analysed for GI, mixograph and both high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits by SDS‐PAGE. Nine different HMW and 14 different LMW allelic combinations were found. In the Canadian set, the most frequent LMW alleles were aaa, bba, caa and cfa while in the Australian set, caa was predominant. For the HMW subunits, the most common allelic groups were Glu‐A1c/Glu‐B1d (null, 6 + 8) and Glu‐A1c/Glu‐B1b (null, 7 + 8) with fewer numbers of Glu‐A1c/Glu‐B1e (null, 20) in both sample sets. LMW subunits were more important contributors to gluten strength than HMW subunits with the rank for higher GI according to the LMW allele (Canadian set) being caa = aaa > bba and aaa > cfa while HMW subunits 6 + 8 = 7 + 8 > 20. Similarly, using the mixograph, strength ranking for the LMW alleles was aaa > cfa = bba and HMW subunit 20 gave poorer rheological properties. For some samples with a good LMW allelic group a low GI was observed and vice versa. Further characterisation of the protein composition in these samples showed the GI results could be explained by polymeric/monomeric (P/M), glutenin/gliadin (Glu/Gli) and HMW/LMW ratios or the proportion of unextractable polymeric protein. © Crown in the right of the State of New South Wales, Australia; and for the Department of Agriculture and Agri‐Food, Government of Canada, © Minister of Public Works and Government Services Canada 2005. Published for SCI by John Wiley & Sons, Ltd.  相似文献   

3.
Thirty durum wheat genotypes from ten countries of origin were grown in field plots for two consecutive years. Three of the genotypes were γ‐gliadin 42 types and the remainder were γ‐gliadin 45 types. Among the γ‐gliadin 45 types, six high‐molecular‐weight glutenin subunit (HMW‐GS) patterns were identified: 6 + 8, 7 + 8, 7 + 16, 14 + 15, 20 and 2*, 20. All the γ‐gliadin 42 genotypes contained low amounts of unextractable polymeric protein (UPP) and exhibited low gluten index values and weak gluten properties. The γ‐gliadin 45 genotypes exhibited a wide range of UPP, gluten index and dough strength. HMW‐GS 20 genotypes were generally weak, whereas HMW‐GS 6 + 8 and 7 + 8 genotypes were generally strong. When baked by a lean formulation, long‐fermentation straight‐dough hearth bread process, the durum wheat genotypes exhibited a wide range of baking quality. Loaf volume and bread attributes were strongly correlated with UPP and gluten index. Some of the genotypes exhibited bread attributes and loaf volume equal or slightly superior to those of a high‐quality bread wheat flour. However, even the strongest durum wheat genotypes exhibited inferior fermentation tolerance to the bread wheat flour, as seen by a requirement for lower baking absorption during dough handling and more fragile dough properties when entering the oven. Among the HMW‐GS groups, HMW‐GS 7 + 8 and 6 + 8 exhibited the best and HMW‐GS 20 the poorest baking quality. Farinograph, alveograph and small‐scale extensigraph properties demonstrated that a combination of dough elasticity and extensibility was needed for superior durum wheat baking performance. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
The aim of this study was to compare five bread and five durum wheat genotypes for gliadins and glutenins profiles, the concentration of free sulphhydryl groups and disulphide bonds, antioxidant capacity of gluten proteins and their bread‐making performance. On average, bread wheat had significantly higher concentration of total sulphur‐rich (S‐rich) and sulphur‐poor (S‐poor) subunits of gliadins, as well as total low molecular weight (LMW) and high molecular weight (HMW) subunits of glutenins than durum wheat. However, durum wheat had higher concentration of S‐rich γ‐gliadins and S‐poor D‐LMW‐glutenins, but did not possess S‐poor ω‐gliadins. The concentration of disulphide bonds and total cysteine was higher in the durum gluten than that in the bread gluten, as well as antioxidant capacity (on average 90.6 vs. 85.9 mmol Trolox Eq kg?1, respectively). In contrast to the bread wheat, the concentration of HMW‐glutenins was negatively associated with extensibility, as well as resistance to extension in durum wheat flour dough.  相似文献   

5.
Following the boom in durum wheat breeding, ancient wheat disappeared from the human diet and old durum wheat varieties were replaced by what is believed to be their better versions: higher yielding modern varieties grown in high-input systems. Breeders have worked intensely ever since to improve the quality of durum wheat traits – mainly gluten subunit alleles – to obtain superior technological quality in the main durum wheat end products (first pasta and then bread) but conflicts about predicting their quality still exist. This is because quality is neither governed by one trait alone nor conditioned by a single controllable factor. This review discusses the evolution of wheat varieties from ancient to old, and then modern durum wheat in terms of agronomy, genetics, technological, and end-product qualities. Environmental effects will not be discussed. Moving from ancient to modern durum wheat varieties, grain yield increased, grain protein concentration decreased, and gluten strength and dough toughness improved, ameliorating the quality of pasta but decreasing the durum wheat versatility. © 2018 Society of Chemical Industry  相似文献   

6.
Six Tunisian durum wheat genotypes (4 landraces and 2 improved) were evaluated for protein content, gluten strength, rheological characteristics, and HMW-GS patterns using a LabChip system. Variance analysis identified genotypic variation. The landraces Azizi, Mahmoudi, Chili, and Arbi exhibited the highest protein concentrations and gluten contents, and best dough tenacity and extensibility values. The Mahmoudi and Chili varieties had the highest protein contents (17.06 and 17.32% dry mass, respectively). Arbi and Chili had the highest gluten contents (60.88 and 60.59%, respectively). Azizi, Mahmoudi, and Chili were characterized by higher dough tenacity, lower dough extensibility, and a greater alveograph configuration ratio P/L. The high molecular weight glutenin subunits 6+8 (Azizi and Mahmoudi) and 7+15 (Chili), coded by the Glu-B1 locus, improved gluten strength and viscoelastic dough properties. Calculated HMW to LMW-GS ratios were within a narrow range of 0.17–0.29. Some genotypes have potential to be used as parents in breeding programs.  相似文献   

7.
An exploratory study was conducted to compare Konya‐Bezostoya and Tokat‐Bezostoya, bread making varieties of wheat, and Sofu, a Turkish local strain used for pasta making plus four breeding lines to ascertain which of the breeding lines most likely merits carrying forward for further refinement of the line. The wheat was analyzed for weight per unit of volume, kernel weight, impurities, kernel size and shape and hardness; for moisture, ash and protein content; sedimentation values and wet and dry gluten content to provide background information on kernel characteristics. The chief purpose of the study was to examine the electrophoretic properties of the standard varieties and breeding lines to relate genetic characteristics to bread‐ or pasta‐making potential. Glutenin profiles and gliadin subunits were among the factors studied. Low and high‐molecular‐weight (HMW) alleles were considered. Two of the  相似文献   

8.
The storage protein composition from the Glu‐1, Glu‐3 and Gli‐1 loci encoding high and low molecular weight glutenin subunits (HMW‐GS and LMW‐GS) and gliadins, respectively, was determined on 30 wheat (T aestivum L) genotypes from three growing seasons. The gliadins and the LMW‐GS were identified as gliadin/LMW‐GS pairs. All samples were analysed by two one‐dimensional electrophoretic techniques, and selected samples were also subjected to two‐dimensional electrophoretic separation. Different statistical/data‐analytical techniques were evaluated in the study of how the presence or absence of the protein alleles, the protein content and the growing seasons are related to flour quality. The year of growth had a large impact on mixograph peak time. When predicting mixograph peak time from the presence or absence of significant proteins and the year of growth, 70% of the variability in mixograph peak time could be explained, whereas only 49% of the variability could be explained when the year of growth was deleted from the model. Protein had no effect on mixograph peak time as expected, and the well‐known positive effect of HMW‐GS 5 + 10, and the negative effects of 2 + 12 and 6 + 8 was observed. Furthermore, some of the gliadin/LMW‐GS combinations influenced mixograph peak time significantly. The gliadin/LMW‐GS at the combined Gli‐A1, Glu‐A3 loci b; ?? was positively related to mixograph peak time, whereas ??; ?? and a;a was negatively related. Although the LMW‐GS component ?? of the alleles b; ?? and ??; ?? alleles appear similar on one‐dimensional gels, two‐dimensional separation of selected samples may suggest that the ?? components in these alleles are different proteins. Cross‐validated partial least squares regression combined with empirical uncertainty estimates (jack‐knifing) of the parameters estimated in the model, gave similar results to ANOVA in identifying quality related protein alleles. The applicability of the multivariate approach in proteomics is, however, much wider. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
The study was conducted on the effect of the addition of common wheat bran on the chemical composition, physical properties, cooking quality and sensory traits of durum wheat pasta. The pasta was produced on an industrial scale, applying an addition of common wheat bran at doses ranging from 20 to 40%. The products obtained were compared to the pasta from whole‐grain durum wheat flour, produced under identical conditions and with commercially available whole‐grain durum wheat pasta. The increase in the content of wheat bran in the pasta caused a significant increase (Duncan test, P ≤ 0.05) of the content of protein, lipids, ash and total dietary fibre (TDF). The application of 25–30% addition of common wheat bran allowed obtaining the products which are as rich in dietary fibre as the pasta prepared at the same technological parameters from whole‐grain durum flour. The pasta containing up to 30% of bran was characterised with lower losses of dry mass and higher resistance to overcooking, in comparison with the pasta made of whole‐grain durum. Simultaneously, the products had very good sensory quality.  相似文献   

10.
Differences in the level of coeliac‐active gluten epitopes in wheat might have some significance for individuals reporting noncoeliac gluten sensitivity. The aim of this study was to compare the reactivity of epitopes towards ELISA R5 and G12 monoclonal antibodies in ancient (emmer; Khorasan wheat; spelt) and modern wheat (common bread wheat; durum), and to check whether the bread‐making process leads to the degradation of epitopes. Data from ELISA R5 and G12 did not match gluten dry weight in wheat. Bread dough fermentation and extensive baking did not change the reactivity of coeliac‐active epitopes towards monoclonal antibodies. Compared to hexaploid bread‐type wheat (spelt; common bread wheat), ancient and modern pasta‐type tetraploid wheat (emmer; Khorasan; durum) had less epitopes reactive towards ELISA R5 and G12 and might be preferable for wheat‐sensitive individuals looking for food with reduced coeliac‐active epitopes.  相似文献   

11.
Spray‐dried gluten has unique properties and is commercially available in the food industry worldwide. In this study, we examined the viscoelastic properties of gluten powder prepared by dispersion in the presence of acetic acid or an ammonia solvent and then followed by lyophilization instead of a spray drying. Mixograph measurements showed that the acid‐ and ammonia‐treated gluten powders had marked decreases in the time to peak dough resistance when compared with the control gluten powder. The integrals of the dough resistance and bandwidth for 3 min after peak dough resistance decreased in both treated gluten powders. Similar phenomena were observed when gliadin was supplemented to gluten powders. Basic and acidic conditions were applied to the acid‐ and ammonia‐treated gluten powders, respectively, and the viscoelastic behaviors were found to depend on the pH in the gluten dispersion just before lyophilization. These behaviors suggest that gluten may assume a reversible change in viscoelasticity by a fluctuation in pH during gluten dispersion. SDS‐PAGE showed that the extractable proteins substantially increased in some polymeric glutenins including the low molecular weight‐glutenin subunit (LMW‐GS) when the ammonia‐treated gluten powder was extracted with 70% ethanol. In contrast, the extractable proteins markedly increased in many polymeric glutenins including the high molecular weight‐glutenin subunit and/or the LMW‐GS when the acid‐treated gluten powder was extracted with 70% ethanol. It thus follows that the extractability of polymeric glutenin to ethanol increases similarly to gliadin when gluten is exposed to an acidic or a basic pH condition; therefore, glutenin adopts gliadin‐like characteristics.  相似文献   

12.
BACKGROUND: Wheat glutenins are the major determinants of wheat quality. In this study, grains at the development stage from three wheat cultivars (Jimai 20, Jin 411 and Zhoumai 16) with different bread‐making quality were harvested based on thermal times from 150 °Cd to 750 °Cd, and were used to investigate glutenin accumulation patterns and their relationships with wheat quality. RESULTS: High and low molecular weight glutenin subunits (HMW‐GSs and LMW‐GSs) were synthesised concurrently. No obvious correlations between HMW/LMW glutenin ratios and dough property were observed. Accumulation levels of HMW‐GSs and LMW‐GSs as well as 1Bx13 + 1By16 and 1Dx4 + 1Dy12 subunits were higher in superior gluten quality cultivar Jimain 20 than in poor quality cultivar Jing 411 and Zhoumai 16. According to the results of two‐dimensional gel electrophoresis, six types of accumulation patterns in LMW‐GSs were identified and classified. The possible relationships between individual LMW‐GSs and gluten quality were established. CONCLUSION: The high accumulation level of HMW‐GSs and LMW‐GSs as well as 1Bx13 + 1By16 and 1Dx4 + 1Dy12 subunits contributed to the superior gluten quality of Jimai 20. Two highly expressed and 16 specifically expressed LMW glutenin subunits in Jimain 20 had positive effects on dough quality, while 17 specifically expressed subunits in Zhoumai 16 and Jing 411 appeared to have negative effects on gluten quality. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Processing conditions for making pasta from blends of maize (Zea mays L) flour and durum wheat (Triticum durum Desf) semolina (ratio 66:33 w) were studied. The maize mill stream characteristics determined the quality of the maize pasta; flours with low lipid content and very fine granulometry produced pasta with good colour characteristics and high cooking quality (with especially good surface conditions). The use of white maize varieties was preferred; they produced pasta which, after heat treatment, had colour indices close to those of durum wheat pasta. Extrusion conditions affected the colour characteristics and cooking quality of the pasta. The cooking qualities of macaroni products were better than those of spaghetti. In all cases, heat treatment (90°C for 2 h) improved the cooking quality of the pasta: it reduced cooking losses but did not alter the surface condition and viscoelasticity index.  相似文献   

14.
Gluten from wheat damaged by heteropterous insects loses its functionality after a short period of resting. In this study the properties of the gluten from damaged wheat are compared with that from sound wheat in order to understand the changes produced during incubation at 37 °C. The amounts of free thiol and amino groups were quantified, obtaining a marked increase of those groups during incubation of the damaged wheat. The thermal characterization of the damaged gluten showed a decrease in the denaturation temperature and a pronounced increase in the protein denaturation enthalpy after a short incubation, although the value of that enthalpy greatly dropped with a longer incubation period. The high‐molecular‐weight glutenin subunits (HMW‐GS) were rapidly hydrolysed while the low‐molecular‐weight glutenin subunits (LMW‐GS) showed a slower degradation. It seems that the HMW‐GS backbone was first hydrolysed, leading to a protein structure with higher thermal stability but, as the hydrolysis proceeded, a deeper degradation of the structure yielded a protein structure with lower denaturation enthalpy. The loss of gluten functionality results from complex changes in the gluten structure at the first and second level of the protein organization structure. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
The best rheological test to differentiate dough and gluten strength and predict cooking quality of different durum wheat cultivars is not recognised yet. Sixteen durum wheat cultivars were grown at three locations in North Dakota using a randomised complete block design to compare different methods for measuring dough/gluten strength and to relate their results to pasta cooking quality. Different rheological tests were used to distinguish the weak, medium strong, strong and very strong gluten cultivars. Alveograph, gluten index and glutograph were the only tests that could differentiate between medium strong and strong gluten samples. Alveograph was the best method to predict gluten strength where few samples are available for assessment. In comparison with alveograph, the gluten index was faster and required less semolina and gave similar results as the alveograph. All tests had significant correlation with cooked spaghetti firmness and negative correlation with cooked weight.  相似文献   

16.
The aim of this study was to determine wheat constituents in bread and pasta that might result in intestinal gas production. Fructans, water‐soluble arabinoxylans, arabinogalactan proteins and fermentable sugars were followed in bread and pasta made with ancient (Khorasan wheat; emmer) and modern wheats (common wheat; durum). After fermentation for 180 min, 80% of fructans were eliminated and higher levels of fructose than glucose accumulated in bread dough supplemented with sucrose. Whole‐grain Khorasan wheat and emmer flours inhibited yeast fermentative activity. Half of fructans, arabinogalactan proteins and sugars were washed out in cooking water for pasta. Water‐soluble wheat arabinoxylans increased in bread and cooked pasta. With very low levels (0.3–0.8%, dry basis), fructans in cooked pasta and, in particular, long‐fermentation bread prepared with modern or ancient wheat would unlikely act as major gas‐forming triggers of gastrointestinal discomfort associated with noncoeliac gluten sensitivity.  相似文献   

17.
Durum wheat glutenin fractions, composed of two low molecular weight proteins DSG-1 and DSG-2 (durum wheat (Triticum durum Desf) sulphurrich glutenin fractions) were extracted from semolina samples using a low concentration of Na tetradecanoate after extracting albumins, globulins and gliadins. DSG proteins have a high? SH plus S? S content. A highly significant correlation was found between the ? SH plus S? S content of this DSG-rich fraction and the cooking quality of pasta (0.63, P <0.01 with firmness and 0.86, P <0.001 with the state of the surface of the cooked pasta) and this seems to be a functional relationship. The use of acetic acid at various molarities showed the presence of high molecular weight glutenin fractions with differing solubility properties. In this respect, differences were found between varieties which are placed in the same group according to the classification of durum wheats based upon the composition of high molecular weight glutenin subunits.  相似文献   

18.
The research was carried out to evaluate spaghetti making potential of 12 Indian durum wheat varieties in relation to their protein and yellow pigment content and peroxidase, polyphenol oxidase, lipoxygenase, and protease activities. The protein content of the durum wheat varieties varied from 12.1% to 15.9% and their yellow pigments content ranged from 3.8 to 7.2 ppm. The peroxidase activity in these wheat varieties varied from 269 to 1010 U/g and polyphenol oxidase activity from 58.8 to 78.3 U/g. The lipoxygenase activity of durum wheats ranged between 1.44 and 6.88 U/g. Protease activity was in the range of 1.1–5.1 U/ g. The data for varieties MACS-1967, MACS-3125, MACS-2846, DWR-2006, HI-8498 and N-59 were indicative of their potential for the preparation of pasta products.  相似文献   

19.
BACKGROUND: Sowing time may impact semolina and pasta cooking quality by changing the environmental conditions during grain filling. The effect of an optimum and a delayed sowing time on semolina quality was studied by comparing six cultivars under irrigation, in order to isolate temperature from drought effects. RESULTS: Protein content was higher in the old cultivars and in the late sowings, according to the number of days with temperature between 30 and 40 °C during ripening. Gluten index increased as temperature rose to a threshold of about 30 °C, then decreased under higher temperatures. Mixograph parameters were less sensitive to high temperatures. Gliadin:glutenin correlated with gluten strength. Spaghetti firmness and protein content were positively correlated independently of sowing date. Cultivars Trinakria and Cappelli had the highest spaghetti firmness (900 and 828 g). CONCLUSIONS: Late sowings may represent a way of increasing pasta cooking quality whenever they place grain filling under thermal conditions able to increase protein percentage, although the accompanying decrease in yield may represent a drawback in environments prone to drought stress during ripening. The lower protein percentages of modern durum wheat cultivars under conventional sowing times results in a lower pasta cooking quality despite higher gluten strength. Published 2011 by John Wiley & Sons, Ltd.  相似文献   

20.
Because of the presence on the market of high-value monovarietal pasta, the aim of this work was to evaluate the potential of DNA profiling to test its authenticity. AFLP profiles obtained from eight monovarietal pasta samples and from the corresponding varieties were compared. The possibility of identifying the variety of an unknown monovarietal pasta by referring to a durum wheat molecular markers database is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号