首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
研究石吊兰总多酚的体外抗氧化活性。采用单因素实验研究提取时间、超声波功率、提取温度、乙醇浓度、提取次数和料液比对总多酚提取率的影响。用还原能力、·OH清除率、DPPH·清除率来考察石吊兰总多酚的体外抗氧化活性。结果表明,超声提取石吊兰总多酚的最佳工艺条件为:提取时间32min,超声波功率为100%,提取温度为25℃,乙醇浓度为80%,提取次数为3次,液料比为20∶1,此时石吊兰总多酚得率为14.0mg GAE/g。此外,石吊兰总多酚的还原能力、对·OH以及DPPH·的清除均高于VC。石吊兰总多酚是天然的抗氧化活性剂和自由基清除剂。   相似文献   

2.
确定辣木叶中总抗氧化物质的最佳提取条件,并评价其体外抗氧化活性。在单因素试验结果的基础上,以DPPH自由基清除率为评价指标,通过采用正交试验研究乙醇体积分数、提取温度、料液比和提取时间4个因素对辣木叶抗氧化物质抗氧化活性的影响。结果表明:最佳提取条件为提取温度为90℃、料液比为1:30、乙醇体积分数为60%、提取时间为1.5 h,在此条件下,辣木叶中多酚含量为69.36±0.58 mg/g,黄酮含量为53.72±0.48 mg/g,DPPH自由基清除率为57.83±0.14%。辣木叶抗氧化物质粗提物对DPPH、ABTS和·OH自由基具有具有较好的清除效果,还原能力较弱,其EC50值分别为86、31和140μg/m L,对DPPH、ABTS和·OH自由基清除率分别达到相同质量浓度BHT的98.26%、99.04%和96.63%,并与辣木叶粗提物质量浓度存在一定的量效关系。  相似文献   

3.
优化香蓼总多酚提取工艺,探讨总多酚的抗氧化活性。以超声波辅助提取方法,乙醇体积分数、料液比和提取时间为因素,采用正交实验,对香蓼总多酚提取工艺进行优化,得到优化香蓼总多酚的提取条件:提取温度30℃、乙醇体积分数50%、料液比1∶50和超声25 min,提取2次,香蓼总多酚的含量为(94.6±0.15)mg/g,平均回收率为100.07%,变异系数为1.00%(n=5)。并通过1,1-二苯-2-苦基肼自由基(DPPH·)清除率和总抗氧化活性的测定对香蓼总多酚进行体外抗氧化活性评价,结果显示:香蓼总多酚的总抗氧化活性和DPPH·清除率均明显高于特丁基对苯二酚(TBHQ),且香蓼总多酚DPPH·半数抑制浓度(EC50=5.5μg/m L)优于TBHQ(EC50=18.0μg/m L)。香蓼总多酚是一种天然的抗氧化活性剂和自由基清除剂。   相似文献   

4.
为优化金花茶叶多酚的提取工艺及分析其抗氧化活性,该试验采用超声波辅助法提取金花茶叶多酚,考察乙醇浓度、提取时间、提取温度和料液比对金花茶叶多酚提取量的影响,并通过正交试验设计对提取工艺进行优化.以DPPH、ABTS+自由基清除率和总抗氧化能力为指标,评价金花茶叶多酚提取物的体外抗氧化活性.结果表明,金花茶叶多酚的最佳提...  相似文献   

5.
研究鱼腥草多酚的超声波辅助提取工艺和抗氧化性能。以多酚提取率为指标,通过单因素实验和正交实验优化鱼腥草多酚提取工艺;通过体外对羟自由基(·OH)、超氧阴离子自由基(O_2~-·)的清除作用评价其抗氧化活性。研究结果表明,鱼腥草多酚最佳提取工艺为乙醇浓度50%、超声浸提温度50℃、超声浸提时间60 min、料液比1∶35,超声功率200 W,此条件下鱼腥草多酚的提取率为3.734%±0.025%,其中浸提温度和乙醇体积分数对鱼腥草多酚提取率具有显著性影响。鱼腥草多酚具有一定的清除·OH和O_2~-·的能力,且清除率与多酚浓度呈剂量效应关系,在实验范围内其对·OH和O_2~-·的清除率均低于同浓度的阳性对照品VC。  相似文献   

6.
利用超声波与双水相体系复合提取神秘果种子多酚,研究不同条件下提取的多酚的抗氧化能力。分别考察丙酮浓度、硫酸铵用量、超声波温度、超声波时间、料液比对神秘果种子多酚提取率的影响;采用单因素试验及响应面设计,优化神秘果种子多酚提取工艺。结果表明,最佳提取工艺条件为:丙酮浓度50%、硫酸铵用量0.22g、超声波温度60℃、超声波时间100min、液料比1∶20(m∶V),多酚理论提取率为11.54%。该条件下神秘果种子多酚的平均提取率为11.56%。该体系提取的多酚纯度为87.85%,优于单独采用超声波提取,可实现初步纯化。抗氧化性试验结果表明,神秘果种子多酚提取物对DPPH·的清除能力和还原能力较强,且还原力和DPPH·清除率与总多酚含量呈正比关系;其抗氧化活性强于抗坏血酸。  相似文献   

7.
为获得杏仁及杏仁皮内多酚提取的最优方案,采用超声波处理样品,以料液比、超声温度、功率和时间为影响因素多酚得率为指标进行研究。结果表明:杏仁多酚超声提取最佳条件为料液比1∶10、超声温度50℃、超声功率400 W,超声时间60 min。而杏仁皮多酚超声提取最佳条件为料液比1∶10、超声温度60℃、超声功率400 W,超声时间60 min。采用还原力、OH、DPPH和ABTS自由基清除率四个抗氧化能力指标对杏仁及杏仁皮多酚的抗氧化能力进行差异性分析,以期为杏仁多酚这一功能性成分的开发提供参考依据。研究结果表明,杏仁多酚抗氧化能力大小与其含量成正比。甜杏仁多酚的还原力、OH和ABTS自由基清除率均高于苦杏仁多酚,而甜苦杏仁多酚的DPPH自由基清除率接近一致,且在0.024 mg/m L浓度时依次为25.4%和23.7%。甜苦杏仁皮多酚抗氧化能力差异不明显,其还原力、DPPH和ABTS自由基清除率三者基本一致,而在0.24 mg/m L浓度时,甜杏仁皮多酚的OH自由基清除率约为苦杏仁皮的2倍。总体来说,甜杏仁多酚的抗氧化能力优于苦杏仁多酚,潜在利用价值更高。   相似文献   

8.
研究超声波辅助水提发芽糙米米糠多糖的工艺优化及多糖的抗氧化活性。以单因素试验为基础,采用响应面法优化多糖的提取工艺,并以DPPH·清除率和·OH清除率为指标考察其体外抗氧化活性。结果表明:在提取温度40℃、液料比14∶1、超声功率140 W、超声时间76 min条件下,发芽糙米米糠多糖的得率为2.85%;米糠多糖对DPPH·的最大清除率为40.57%,对·OH的最大清除率达到57.25%,高于同质量浓度VC溶液的清除率。超声波辅助水提的发芽糙米米糠多糖具有较好的抗氧化能力。  相似文献   

9.
响应面法优化藜麦糠中多酚超声提取工艺及其抗氧化活性   总被引:1,自引:0,他引:1  
为了开发利用藜麦糠资源,采用单因素实验与响应面分析相结合的方法,优化了藜麦糠中多酚超声辅助提取工艺,并以BHT为阳性对照,DPPH·和·OH清除率为指标评价其抗氧化活性。结果显示,藜麦糠中多酚超声辅助最佳提取工艺为:乙醇浓度44%,提取时间31 min,提取温度61℃,料液比(g/mL) 1∶43,超声功率200 W。该工艺条件下,藜麦糠中多酚提取率为0.79%。藜麦糠多酚对·OH和DPPH·的清除率均随其浓度增加而增大,量效关系明显,对·OH和DPPH·的IC_(50)分别为13.52μg/mL和2.48μg/mL。表明优化的藜麦糠多酚提取工艺稳定可行,藜麦多酚具有强的抗氧化活性。  相似文献   

10.
响应面法优化绿萝花多糖提取及抗氧化活性   总被引:1,自引:0,他引:1  
研究绿萝花多糖的超声波辅助提取工艺优化方法,并测定其体外抗氧化活性。在单因素试验基础上,选定温度、时间、液料比和超声波功率为影响因素,采用Box-Behnken中心组合设计,通过4因素3水平的试验和响应面回归分析得出优化的提取工艺。对酶-Sevage法结合脱蛋白后的多糖进行清除·OH和DPPH·2种自由基的实验以评价其抗氧化活性。结果表明,最优提取条件为:提取温度74℃、提取时间1.5 h、液料比32:1、超声波功率455 W,绿萝花多糖提取率为3.51%。多糖浓度为4.0 mg/mL时,对·OH和DPPH·的清除率分别达到76.03%和76.94%。超声波辅助提取绿萝花多糖工艺合理可行、成本较低,绿萝花多糖有良好抗氧化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号