首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用正交试验方法,进行了淀粉液化芽孢杆菌发酵产β-葡聚糖酶培养基的优化。结果表明,采用玉米粉30g/L,大麦粉40g/L,豆饼粉30g/L,Na2HPO4.12H2O 6g/L,(NH4)2SO4 4g/L,CaCl2 0.8g/L,MgSO4.7H2O1g/L组成的培养基发酵,β-葡聚糖酶活力达到128.55U/mL,比优化前提高了22.48%。在β-葡聚糖酶溶液中添加大分子亲水型多糖黄原胶、动物蛋白明胶、甘油、氯化钠可明显提高β-葡聚糖酶的热稳定性。将添加甘油120g/L、黄原胶5g/L复合稳定剂的葡聚糖酶溶液60℃处理2h,酶液的残余酶活比未经处理的酶活提高了55.3%。  相似文献   

2.
采用响应面优化法对一株野生特基拉芽孢杆菌的发酵培养基进行优化,最终培养基各组分为:大麦粉68.4 g/L,玉米粉40 g/L,豆饼粉61.1 g/L,KH2PO41 g/L,MgSO4·7H2O 0.1 g/L,CaCl20.1 g/L。用优化培养基在37℃摇瓶发酵52 h,β-1,3-1,4-葡聚糖酶酶活达到191.96 U/mL,是优化前产酶水平的1.91倍。  相似文献   

3.
研究发现一株高产β-1,3-1,4-葡聚糖酶的黄曲霉菌株,优化了其产酶条件并考察了粗酶潜在的工业应用价值。依次采用单因素法和响应面分析法优化该菌发酵产酶条件,得到其优化产酶条件:麸皮19 g/L、磷酸氢二铵30g/L、吐温-60 21 g/L、NaCl 5 g/L、MgSO_4·7H_2O 0. 5 g/L、KH_2PO_40. 75 g/L、培养基初始pH值8. 0、培养温度38℃、培养时间6d。在此条件下,黄曲霉能够分泌的最高胞外β-1, 3-1,4-葡聚糖酶酶活达155.9 U/mL。水解研究发现,该酶能高效降解大麦粉和燕麦粉中的β-葡聚糖,并直接生成葡萄糖。这些结果表明,黄曲霉能高效分泌β-1,3-1,4-葡聚糖酶,且该酶具有较强的工业应用前景。  相似文献   

4.
为了对芽孢杆菌发酵产β-葡聚糖酶的培养基进行进一步的研究,以芽孢杆菌为发酵菌,通过单因素试验和三因素三水平正交试验法对芽孢杆菌的10L发酵罐发酵产酶培养基进行优化。实验结果表明:芽孢杆菌产β-葡聚糖酶的最优培养基为甘油含量6g/L、酵母粉含量24g/L和NaCl含量10g/L;发酵条件:接种量为10%、初始发酵pH值为7、培养温度为37℃、转速为350~950r/min、通风量为1vvm和发酵时间15h。经过3批发酵实验验证,最优条件下β-葡聚糖酶最高酶活可达3112U/mL。  相似文献   

5.
采用Plackett-Burman(PB)试验和Box-Behnken(BB)试验对黑曲霉(Aspergillus niger)HS-5高产β-葡聚糖酶培养基进行优化。首先,采用PB设计从影响黑曲霉HS-5产酶培养基的11个因素中筛选出大麦粉、酵母膏、硝酸铵3个显著影响因素,再通过BB试验对显著因素进行优化。由此得到黑曲霉HS-5发酵产酶的最佳培养基组成为大麦粉3.9%、酵母膏2.1%、硝酸铵0.15%。在此优化条件下,β-葡聚糖酶活力为18.82 U/mL,与预测值18.96 U/mL基本上吻合。  相似文献   

6.
报道了淀粉液化芽孢杆菌(Bacillusamyloliquefacien)BS5582菌株产β-葡聚糖酶和蛋白酶的液体发酵条件优化和酶学特性的研究结果。摇瓶水平下产β-葡聚糖酶的最佳培养基(g/L)为大麦粉40,玉米粉30,豆饼粉30,Na2HPO4·12H2O6,(NH4)2SO44,MgSO·47H2O1,CaCl20.8;产酶最佳起始pH7.0,装液量25mL/250mL。种子于37℃培养10h后,接种量8%,在37℃下发酵51.75h后β-葡聚糖酶酶活最高达到182.52U/mL,蛋白酶酶活达8062U/mL。β-葡聚糖酶的最佳反应pH6.5,最佳反应温度50℃。10mmol/L的Ca2 、Na 、NH4 、K 、Mg2 对β-葡聚糖酶活性有一定的激活作用;而相同浓度的Cu2 、Fe2 则表现出较强的抑制作用。  相似文献   

7.
为了提高重组大肠杆菌(Escherichia coli BL21DE3)(pET-28a(+)-bgl)发酵产β-1,3-1,4-葡聚糖酶的能力,研究了发酵培养基中各类碳源及氮源的影响,并通过响应面分析法优化培养基各组分的含量。结果表明,甘油为最适碳源,酵母粉及胰蛋白胨为氮源。优化的培养基组成是:yeast extract终浓度为20 g/L,胰蛋白胨12.5 g/L,甘油14.1 mL/L,KH2PO42.17 g/L,K2HPO42.74 g/L。三角瓶发酵产β-葡聚糖酶酶活(2 978.2 U/mL),与初始培养基(1 671.9 U/mL)相比,提高了1.78倍。研究结果表明,发酵培养基的优化对重组大肠杆菌发酵生产工业酶具有重要作用。  相似文献   

8.
采用响应面法对重组大肠杆菌BL21(DE3)-pET28a(+)-bgl产β-葡聚糖酶发酵培养基成分进行优化.首先采用Plackett-Burman设计从培养基组成中筛选出了对产酶水平有显著影响的甘油、酵母粉、NaCl三种成分,利用Box-Benhken设计对浓度进行优化,结果表明,它们的最佳浓度分别为18.9、45.6、5.3g/L,产β-葡聚糖酶水平为2311.81U/mL,较优化前提高了23%.  相似文献   

9.
从土壤样品中筛选得到一株高产β-1,3-1,4-葡聚糖酶的真菌,经鉴定为泡盛曲霉(Aspergillus awamori),命名为Aspergillus awamori CAU33。依次采用单因素试验和响应面分析法优化了其液体发酵产β-1,3-1,4-葡聚糖酶的条件,得到该菌株产酶的最适条件为:玉米芯质量浓度55 g/L、大豆蛋白胨质量浓度25 g/L、曲拉通X-114质量浓度23 g/L、初始pH 4.5、培养温度35℃、培养时间6 d。在此条件下β-1,3-1,4-葡聚糖酶活力达到8 447 U/m L,为优化前的17.6倍。  相似文献   

10.
黑曲霉β-葡聚糖酶产酶培养基的研究   总被引:3,自引:0,他引:3  
探讨了黑曲霉(Aspergillusniger)FH11菌株产β-葡聚糖酶最佳培养基的组成。通过单因素试验,确定了培养基的组分和一些化学物质对酶合成的影响,结果表明,适当添加某些物质可以促进产酶,提高酶活。根据单因素实验结果,通过正交试验,确定了培养基中最佳碳源为3%大麦粉,最佳氮源为2%酵母粉和0.2%硫酸铵,优化了摇瓶发酵产酶培养基的组成。  相似文献   

11.
从农家自制辣椒酱中分离纯化了一株耐盐酵母,通过β-1,3葡聚糖酶鉴定(刚果红染色法)确定其具有合成、分泌胞外β-1,3葡聚糖酶特性。Na Cl耐受性研究确定其具有高耐盐性,能经144 h的适应期后在24%Na Cl的培养基B中稳定生长120 h。经26s r RNA基因序列分析鉴定为鲁氏酵母A(Z.Rouxii A)。Z.Rouxii A发酵培养中存在二次生长现象,其生物量在24 h和48 h达到峰值,分别比18 h的6.38 g/L提高了46.55%和87.15%,而21 h后葡萄糖浓度仅维持在1.57 g/L左右,说明:Z.Rouxii A生长过程中合成、分泌的β-葡聚糖酶持续降解发酵培养基中添加的β-1,3-1,6-葡聚糖,为其二次生长提供了碳源和能源。Z.Rouxii A的β-1,3-葡聚糖酶活性曲线与生长曲线基本趋势一致,最大酶活性随着菌体自溶(12 h、24 h和48 h)而迅速降低,48 h达到酶活峰值15.23 U/m L,说明:Z.Rouxii A的β-1,3-葡聚糖酶合成与细胞生长偶联。以上数据确认该菌为产β-葡聚糖酶高耐盐鲁氏酵母。  相似文献   

12.
采用CMC唯一碳源平板法和内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶等3种酶平板鉴别法从海南红树林土壤中分离到109个有阳性信号的菌株,经发酵产酶复筛选出一株产纤维素酶活相对较高的真菌HBZ003。经鉴定该菌为产紫青霉(Penicillium purpurogenum)。通过发酵产酶条件优化,获得最佳培养基组成为:麸皮8 g/L,CMC 2 g/L,(NH4)2SO43 g/L,KNO32 g/L,KH2PO43 g/L,NaCl 6 g/L,CaCl20.5 g/L;发酵条件为250mL三角瓶中装培养液100mL,在pH4.0、30℃,160 r/min条件下振荡培养5 d,测得发酵液中CMCase和FPA分别为16.04U和4.08 U。  相似文献   

13.
黑曲霉β-葡萄糖苷酶发酵培养基的优化   总被引:10,自引:0,他引:10  
用响应面方法对黑曲霉(Aspergillusniger)ZJ1生产β-葡萄糖苷酶的培养基进行了优化。首先用部分因子设计对培养基组分稻草粉、麦麸、大麦粉、(NH4)2SO4及pH对β-葡萄糖苷酶活性的影响进行了评价,并找出主要影响因子为稻草粉和(NH4)2SO4,两者均为负影响,其它组分对酶活没有显著影响;再用最陡爬坡路径逼近最大响应区域;最后用中心组合设计及响应面分析确定主要影响因子的最佳浓度。经响应面分析获得的优化培养基组成(g/L)为:稻草粉7.02,麦麸16.65,大麦粉16.65,(NH4)2SO42.44,KH2PO40.5,MgSO4·7H2O0.5。经优化后,β-葡萄糖苷酶酶活性达到403.7U/mL。  相似文献   

14.
研究采用响应面法(RSM)对木霉TP-24固态发酵生产β-1,3-葡聚糖酶的培养基组成(碳源酵母粉、氮源NH4NO3和料水比)进行了优化。结果表明,采用以麸皮为基质、添加1.91%酵母粉、1.99%NH4NO3和15.79mL水的培养基中,接种木霉TP-24菌株于30℃发酵4d,β-1,3-葡聚糖酶活力可达到594.37U/g·ssc,比对照产酶水平提高了273.55%。  相似文献   

15.
为获得罗耳阿太菌β-1,3葡聚糖酶和胞外多糖同时高产的发酵条件,以玉米淀粉和玉米黄浆作为发酵培养基的重要组分,以罗耳阿太菌β-1,3葡聚糖酶产量和胞外多糖产量为指标,选择培养温度、培养时间、摇床转速为优化因素,在单因素试验的基础上,通过响应面试验进行双响应值优化,对所得结果的三维图和等高线叠加图进行分析,获得了双指标同时达到最优的发酵条件。结果表明:接种量5%、培养温度28.5℃、培养时间7.5 d、摇床转速180 r/min时,粗酶产量39.96 U/m L,多糖产量18.11 g/L,分别达到了预测值的98.96%和99.27%。  相似文献   

16.
以大麦β-葡聚糖为唯一碳源,从吐鲁番地区采集的土样中筛选到1株热稳定性β-葡聚糖酶产生菌株XTP-5,经初步鉴定该菌株为枯草芽孢杆菌(Bacillus subtilis)。对该菌株产酶培养基优化实验结果表明:最佳培养基配方:麦糟粉20g/L、酵母粉4/L、K2HPO41.0g/L、NaCl0.5g/L、FeSO·47H2O0.01g/L、MgSO·47H2O0.5g/L、(NH4)2SO42.0g/L、Tween-800.06%。接种上述液体培养基(pH7.0)中,于37℃、180r/min摇瓶培养60h达到产酶高峰,酶活力可达9.52U/mL。  相似文献   

17.
本论文初步探讨了利用裂褶菌发酵体系所产的内切β-1,3-葡聚糖酶对发酵产生的裂褶多糖进行适度酶解,以获得分子量适中溶解度较好的裂褶多糖的可能性。以裂褶多糖产量和β-1,3-葡聚糖内切酶和总酶活为考察指标,采用刚果红琼脂染色法和摇瓶培养,从四株裂褶菌GIM5.42、GIM5.43、GIM5.44、Sc1中筛选出多糖产量和酶活都相对较高的菌株GIM5.43,多糖产量和酶活分别为2.29g/L与0.28 U/m L。在摇瓶中考察了氮源及其添加方式对裂褶菌菌体生长、裂褶多糖产率、β-1,3-葡聚糖酶的酶活及其影响规律。结果表明:菌体生长及其分泌胞外多糖和葡聚糖酶的最适酵母浸膏和氯化铵的添加时间和添加量是不同的。为了保证多糖产率,采用分批补加策略,初始酵母浸膏浓度1.00 g/L,发酵第6 d补加0.10 g/L酵母浸膏,多糖产量为4.16 g/L,比未优化提高了61.24%,总酶活为0.34 U/m L,提高了142.86%。  相似文献   

18.
β-葡聚糖酶产酶培养基的优化   总被引:4,自引:0,他引:4  
通过对黑曲霉(QYW-01A06)产β-葡聚糖酶培养基的研究,得出其最佳培养基配方为(/100mL):大麦粉4.0g,玉米浆1.0g,(NH4)2SO40.3g,NaNO30.2g,MgSO40.02g,FeSO4·7H2O0.01g,CaCO30.5g;在最佳培养基条件下进行摇瓶培养(80mL培养基/500mL三角瓶),每毫升发酵液酶活力达5252u,酶活力是初始培养基的2.6倍。  相似文献   

19.
黑曲霉固体发酵β-葡聚糖酶培养基优化的研究   总被引:2,自引:0,他引:2  
对黑曲霉 (Asp·niger)FSN6 5固体发酵产β-葡聚糖酶培养基优化研究结果表明 :培养基中C/N(以麸皮与豆饼粉比例计 )为 8:1 ;最佳无机氮源为NH4NO3;培养基中添加大麦对产酶没有明显的诱导作用 ;培养基最适水分比例为 1 :1 (g/g) ;30℃下发酵 70h产酶水平高达 1 36 1 2 2 .5u/g  相似文献   

20.
确定康氏木霉(Trichoderma koningii)产β-葡聚糖酶的发酵培养条件。利用响应面优化法,通过两步实验设计,即部分因子实验和中心组合实验设计,对康氏木霉液体发酵产β-葡聚糖酶的最佳培养条件进行了优化研究。得到最优培养条件:发酵培养温度29·8℃,摇床转速为200r/min,发酵培养基起始pH为3·43;250mL三角瓶中装液量30mL;接种量5%(1·5mL/瓶),培养时间为156h。在最优培养条件下康氏木霉产β-葡聚糖酶活力达到36·9U/mL。实验结果表明,康氏木霉在液体发酵条件下产β-葡聚糖酶,发酵液起始pH和培养温度对康氏木霉产β-葡聚糖酶活力影响最显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号