首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
现有的储能电池管理系统大都是从电动汽车电池管理系统直接引用过来的,其管理的电池容量小,功能单一,实时性较差.兆瓦级储能系统由大容量电池串联,对电池系统管理效率提出了新要求.为解决这一问题,提出了一种3层分层式储能电池管理系统.对底层BMU,中层BCMS和顶层BAMS从硬件和软件设计两方面做了详细地介绍.分层式储能电池管理系统具有检测与计算,电池单体均衡管理,高压管理,统计存储,充放电管理,报警功能和通信.  相似文献   

2.
针对修井设备电动化更新需求以及普通电动修井机推广应用受限的问题,研制了电储能修井机。该修井机以磷酸铁锂型电池作为储能装置,通过技术研发突破网电储能协同控制、电池管理及油气环境下的使用安全和现场检测评价等技术难题,形成了网电储能联合供电的电控技术、“智慧报警”防护体系的电池管理系统,实现了电池储能技术在修井机上的良好应用。经现场测试,电储能修井机可满足不同井况的修井作业需求。在停电情况下,该储能装置可独立供电作业,适用范围大,应用前景广阔。  相似文献   

3.
The hybrid fuel cell/battery technology is an attractive option for a sustainable mobility with zero emissions. In fact, this solution owns system scalability features and high efficiency and, compared to battery electric solutions, it offers advantages in terms of flexibility of use and fast charging times. However, the thermal management for the battery in this type of powertrain is a crucial issue, since operating temperatures can significantly affect safety and performance. In this study, an innovative system aimed at providing high storage energy density and improving the battery pack performance of hybrid fuel cell/battery vehicles is investigated for use on-board of a plug-in fuel cell electric bike. The proposed system, developed by the authors in previous studies, integrates the battery pack with a hydrogen storage based on metal hydrides. The idea behind this solution is to exploit the endothermic desorption processes of hydrogen in metal hydrides to cool down the battery pack during operation. An experimental analysis is conducted to assess the thermal management capabilities of this system: by considering a typical duty cycle designed on the base of road test measurements, battery pack temperature profiles are evaluated and compared against those from a control experiment where no battery thermal management is enabled (i.e. no hydrogen desorption from the metal hydride tank). The results show that, beside enhancing the on-board stored energy capacity, the proposed system represents an effective solution to provide an efficient thermal management for the battery pack, with significant advantages in terms of attainable riding range.  相似文献   

4.
大容量锂离子电池储能系统对完善传统电网和高效利用新能源都具有非常重要的作用。为了实现大容量锂离子电池储能系统的高倍率化、长寿命化以及高安全性,高性能电池热管理系统的研发刻不容缓。本文总结了温度对锂离子电池性能的影响规律,综述了空冷、液冷、热管冷却、相变冷却这4种典型热管理技术的研究概况,分析了热管理技术在锂离子电池储能系统中的应用与研究状况。随着锂离子电池储能系统工作倍率的提高,产热量随之增大,对热管理系统的要求也越来越高。下一步的研究工作应围绕空冷系统优化、基于新型冷却介质的液冷系统、经济型热管及多目标优化设计这4方面展开。  相似文献   

5.
This work investigates on the performance of a hybrid energy storage system made of a metal hydride tank for hydrogen storage and a lithium-ion battery pack, specifically conceived to replace the conventional battery pack in a plug-in fuel cell electric scooter. The concept behind this solution is to take advantage of the endothermic hydrogen desorption in metal hydrides to provide cooling to the battery pack during operation.The analysis is conducted numerically by means of a finite element model developed in order to assess the thermal management capabilities of the proposed solution under realistic operating conditions.The results show that the hybrid energy storage system is effectively capable of passively controlling the temperature of the battery pack, while enhancing at the same time the on-board storage energy density. The maximum temperature rise experienced by the battery pack is around 12 °C when the thermal management is provided by the hydrogen desorption in metal hydrides, against a value above 30 °C obtained for the same case without thermal management. Moreover, the hybrid energy storage system provides the 16% of the total mass of hydrogen requested by the fuel cell stack during operation, which corresponds to a significant enhancement of the hydrogen storage capability on-board of the vehicle.  相似文献   

6.
Battery storage is a crucial element in alternative energy and electric vehicle systems. Three battery storage configurations: a conventional; a parallel; and a dual, were analyzed for both shallow cycle and deep cycle lead-acid batteries to determine if capacity improvement is achievable. Daily profiles for the weekly irradiance, daily loads, and ambient temperature are simulated. Cycle tests were performed monthly to determine the effect each configuration had on the available battery capacity. Results for each battery type differ. Available capacity was improved using the parallel configuration with shallow cycle batteries and the dual configuration with deep cycle batteries  相似文献   

7.
为了增加电池储能系统针对大规模风电并网对电网系统的友好性,降低风电功率波动对电网的不利影响,本文提出以电池荷电状态和风电功率为反馈量,改变平抑时间常数和电池储能系统充放电目标功率为目标的平抑风电功率波动的自适应控制策略。经仿真验证,上述策略能有效避免电池的荷电状态大幅波动,延长电池使用寿命,从而减小电池储能系统的安装容量,最大限度地发挥电池储能系统的作用。  相似文献   

8.
Efficiencies of hydrogen storage systems onboard fuel cell vehicles   总被引:2,自引:1,他引:2  
Energy efficiency, vehicle weight, driving range, and fuel economy are compared among fuel cell vehicles (FCV) with different types of fuel storage and battery-powered electric vehicles. Three options for onboard fuel storage are examined and compared in order to evaluate the most energy efficient option of storing fuel in fuel cell vehicles: compressed hydrogen gas storage, metal hydride storage, and onboard reformer of methanol. Solar energy is considered the primary source for fair comparison of efficiencies for true zero emission vehicles. Component efficiencies are from the literature. The battery powered electric vehicle has the highest efficiency of conversion from solar energy for a driving range of 300 miles. Among the fuel cell vehicles, the most efficient is the vehicle with onboard compressed hydrogen storage. The compressed gas FCV is also the leader in four other categories: vehicle weight for a given range, driving range for a given weight, efficiency starting with fossil fuels, and miles per gallon equivalent (about equal to a hybrid electric) on urban and highway driving cycles.  相似文献   

9.
应用锂离子电池进行储能已成为大容量储能技术研究的重点,但为保证电池组的可靠性、安全性、一致性及使用寿命,必须设计电池管理系统来对锂离子电池进行有效管理。本文提出了一种适用于大容量储能技术的锂离子电池管理系统,该管理系统采用分层采集和管理的方法,分别对单体电池、电池组和储能子系统进行管理。文章详述了分层管理系统的结构、功能和管理策略,其中着重介绍了单体电池数据采集功能、电池状态估计功能和均衡管理功能,并进行了实验验证,给出了实验结果分析。实验结果证明了该管理系统可以满足实际的大容量储能应用需求,可以实现锂离子电池的高精度状态估计功能和高效均衡控制策略,具有很好的应用前景,为后续产业化发展提供了一种技术和思路。  相似文献   

10.
Energy storage is often seen as necessary for the electric utility systems with large amounts of solar or wind power generation to compensate for the inability to schedule these facilities to match power demand. This study looks at the potential to use building thermal energy storage as a load shifting technology rather than traditional electric energy storage. Analyses are conducted using hourly electric load, temperature, wind speed, and solar radiation data for a 5-state central U.S. region in conjunction with simple computer simulations and economic models to evaluate the economic benefit of distributed building thermal energy storage (TES). The value of the TES is investigated as wind and solar power generation penetration increases. In addition, building side and smart grid enabled utility side storage management strategies are explored and compared. For a relative point of comparison, batteries are simulated and compared to TES. It is found that cooling TES value remains approximately constant as wind penetration increases, but generally decreases with increasing solar penetration. It is also clearly shown that the storage management strategy is vitally important to the economic value of TES; utility side operating methods perform with at least 75% greater value as compared to building side management strategies. In addition, TES compares fairly well against batteries, obtaining nearly 90% of the battery value in the base case; this result is significant considering TES can only impact building thermal loads, whereas batteries can impact any electrical load. Surprisingly, the value of energy storage does not increase substantially with increased wind and solar penetration and in some cases it decreases. This result is true for both TES and batteries and suggests that the tie between load shifting energy storage and renewable electric power generation may not be nearly as strong as typically thought.  相似文献   

11.
文章提出了一种光伏电力混合储能系统的能量管理控制策略,主要应用于含有光伏电源(Photovoltaic,PV)、电池能量存储(Battery Energy Storage, BES)和交流负载的发电网络系统中。该策略能够充分利用电力系统中组合架构之间的连接关系,有效缓解了目前电网中BES系统存在的过充电、欠充电等问题,并将充放电电流控制在一个相对稳定的范围内,延长了电池的使用寿命。分别在含有传统铅酸和锂离子电池的混合能量系统中使用6 kVA电源转换器进行实验,结果证明了所提出的能量管理策略的正确性和有效性。  相似文献   

12.
The increasing pollution caused by conventional cars and the problems caused by the use of fossil fuels have drawn the attention of researchers and manufacturers to the design of cars that use clean fuels. Electric vehicles connected to the network have a significant impact on reducing environmental pollution and transportation costs, especially in big cities. The cost of supplying loads to subscribers in the distribution network also includes generation and transmission costs. These costs are directly related to the intelligence of the distribution network and the total amount of energy of electric vehicles. The contribution of each generation unit and each transmission line must be calculated to determine the generation and transmission costs. In this research, in order to maximize the profit of the parking lot owner, improve voltage drop and load factor, a comprehensive framework for optimal energy management in a parking lot is presented, which can provide a method to control the charging of electric vehicles, in addition to meeting the needs of their owners, only as a series of controllable loads that they need to receive electrical energy to charge their batteries. In the next step, considering the inherent characteristic of electric cars, i.e. having a battery, and looking at them as a series of storage resources that can return the electric energy in their battery to the grid if necessary, a method to simultaneously control their charging and discharging is provided. In the final step of the paper, it is assumed that hydrogen storage systems will also enter the circuit, and thus, a comprehensive method for energy management is proposed. Finally, the linearized model of demand response and the proposed scheme along with the modeling of hydrogen storage and electric vehicles are considered to be part of contribution to improve the operation and economic situation of the network.  相似文献   

13.
The attention on green and clean technology innovations is highly demanded of a modern era. Transportation has seen a high rate of growth in today's cities. The conventional internal combustion engine‐operated vehicle liberates gasses like carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons, and water, which result in the increased surface temperature of the earth. One of the optimum solutions to overcome fossil fuel degrading and global warming is electric vehicle. The challenging aspect in electric vehicle is its energy storage system. Many of the researchers mainly concentrate on the field of storage device cost reduction, its age increment, and energy densities' improvement. This paper explores an overview of an electric propulsion system composed of energy storage devices, power electronic converters, and electronic control unit. The battery with high‐energy density and ultracapacitor with high‐power density combination paves a way to overcome the challenges in energy storage system. This study aims at highlighting the various hybrid energy storage system configurations such as parallel passive, active, battery–UC, and UC–battery topologies. Finally, energy management control strategies, which are categorized in global optimization, are reviewed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Large capacity electricity storage systems are in daily use around the world, helping to stabilize the electricity delivery infrastructure and minimize the cost of meeting peak-load requirements. These systems typically operate on a diurnal basis: charging with inexpensive utility energy at night and discharging during periods of peak load demand. Notable successes in electric power storage include medium voltage power quality-UPS (uninterruptible power supply) systems, delivering up to 16 MW, used to safeguard entire industrial facilities and recently commissioned Golden Valley Electric Association battery energy storage system (GVEA BESS), the most power battery system, discharging up to 46 MW and with a specified run time of 15 min. The common factor in these successes is that the storage devices work with, rather than compete against conventional generation. This article describes the functions of these systems and examines other emerging applications in power storage, such as the stabilization of wind farm output. It also addresses other power storage technologies that are achieving commercial successes, such as flywheels and supercapacitors.  相似文献   

15.
China has a big population and all countryside are being urbanized recently, more and more buildings are being built with careful considerations of energy saving. Building integrated energy systems are thought to be of priority importance. There are extended energy storage researches and developments for buildings, such as building materials for stabilization of room temperature using the daily and night temperature difference in north China, desiccant materials integrated with buildings used for constant relative humidity control in south China. Solar thermal energy storage using specialized design of hot water tank, phase change materials (PCMs) or pebble stones have been well studied and demonstrated, whereas chemical energy storage capability had been also considered with potential applications. The development of electric battery storage for Photovoltaic (PV) is also highlighted as it is a good opportunity for smart grid development. In modern commercial building, uninterruptible power supplies using rechargeable battery packs and thermal energy storage are currently two of the most common applications for energy storage, while other storage technologies are still at the research stage. The above development of building integrated energy storage opportunities in China are described and analyzed, some demonstration projects are shown in this paper.  相似文献   

16.
本文介绍了近几年电力储能在全球储能领域的现况及电力储能在现有储能系统中的应用规模。针对目前较成熟的电化学储能电池进行了分析,着重分析了锌镍电池的特点,首先对锌镍电池的低温放电性能、寿命、大电流充放等性能进行了阐述,模拟储能系统充放电实验的结果表明锌镍电池具有循环寿命长和充放电效率高等特点。其次对单液流锌镍电池的工作原理进行了介绍,就目前单液流锌镍电池的各个型号的中试产品以及50 kW·h储能系统进行了总结和讨论,分析表明锌镍电池作为一种新型的蓄电池,其循环寿命长、安全性能好、制造和维护成本较低,随着近几年新材料的发展,锰正极的锌基电池实验成功,促进了锌空气电池、锌铁电池等系列锌基电池的研发,锌镍电池未来在储能市场将会大放异彩。  相似文献   

17.
The water battery (reversible water electrolyser) as envisaged by Battelle Columbus Laboratories (BCL) is a single energy storage device for use on an electric utility system at dispersed locations such as substations. Available off-peak electric energy can be used to electrolyse water, thus producing hydrogen and oxygen, which can be stored externally to the device. These gases can be recycled, as necessary, through the same device, operating in reverse, to generate D.C. electricity to meet utility system peak-load demands.

A conceptual design for a 10 MW water battery installation compatible with the requirements of the PSE&G system is formulated. General design approaches and cost estimates are developed for the basic water battery module, the energy storage subsystem (which consists of the compressors and storage vessels for the hydrogen and oxygen), and the power conditioning subsystem (which controls and regulates direct current to the water battery and alternating current to the grid). The design evaluations address optimum system operating efficiency, projected battery life, reliability, maintenance, materials availability (the water battery employs substantial, but ultimately recoverable, amounts of platinum and palladium in its construction), and environmental impact in terms of pollutants and physical size.  相似文献   


18.
Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage.This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling.After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries.  相似文献   

19.
由于电动汽车快速充电站大功率快速充电的特性会对电网的稳定造成冲击,因此考虑在电动车快速充电站中配置电池储能系统(BESS),对充电站负荷进行削峰填谷,从而减少充电站变压器配置容量、缓解大功率快速充电对电网的不利影响。考虑到目前我国大量退役动力电池亟待回收利用的现状,结合梯次利用电池储能系统,建立了基于电动汽车快速充电站整体成本与收益的经济性评估模型,以快速充电站年净收益最大为目标函数,采用改进的遗传算法对模型优化求解。结合算例对快速充电站不配置储能、配置常规电池储能和配置梯次电池储能等不同情况进行了经济性评估,并综合考虑经济性与储能削减负荷的效果,确定了梯次电池储能系统最优容量配置方案。  相似文献   

20.
A linear programming (LP) routine was implemented to model optimal energy storage dispatch schedules for peak net load management and demand charge minimization in a grid-connected, combined photovoltaic-battery storage system (PV+ system). The LP leverages PV power output and load forecasts to minimize peak loads subject to elementary dynamical and electrical constraints of the PV+ system. Battery charge/discharge were simulated over a range of two PV+ system parameters (battery storage capacity and peak load reduction target) to obtain energy cost for a time-of-use pricing schedule and the net present value (NPV) of the battery storage system. The financial benefits of our optimized energy dispatch schedule were compared with basic off-peak charging/on-peak discharging and real-time load response dispatch strategies that did not use any forecast information. The NPV of the battery array increased significantly when the battery was operated on the optimized schedule compared to the off-peak/on-peak and real time dispatch schedules. These trends were attributed to increased battery lifetime and reduced demand charges attained under the optimized dispatch strategy. Our results show that Lithium-ion batteries can be a financially viable energy storage solution in demand side, energy cost management applications at an installed cost of about $400–$500 per kW h (approximately 40–50% of 2011 market prices). The financial value of forecasting in energy storage dispatch optimization was calculated as a function of battery capacity ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号