首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
Low voltage x-ray microanalysis, defined as being performed with an incident beam energy ≤5 keV, can achieve spatial resolution, laterally and in depth, of 100 nm or less, depending on the exact selection of beam energy and the composition of the target. The shallow depth of beam penetration, with the consequent short path length for x-ray absorption, and the low overvoltage, the ratio of beam energy to the critical ionization energy, both contribute to minimizing the matrix effects in quantitative x-ray microanalysis when the unknown is compared to pure element standards. The low beam energy restricts the energy of the atomic shells that can be excited, forcing the analyst to choose unfamiliar shells/characteristic peaks. The low photon energy shells are subject to low fluorescence yield, so that the peak-to-continuum background is reduced, severely limiting detectability. The limited resolution of semiconductor energy dispersive spectrometry results in frequent peak interference situations and further exacerbates detection limits. Future improvements to the x-ray spectrometry limitations are possible with x-ray optics-augmented wavelength dispersive spectrometry and microcalorimeter energy dispersive spectrometry.  相似文献   

2.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号