共查询到20条相似文献,搜索用时 9 毫秒
1.
何爽黄鑫林思睿徐澜菲王莹莹邹任玲李丹胡秀枋 《软件工程》2022,(8):7-10
近年来,神经网络的模型不断得到完善,神经网络在运动想象分类任务中的应用越来越广泛,分类准确率不断提高。本文主要对传统的机器学习算法进行介绍与总结,在此基础上对深度学习网络模型的原理及应用进行了概括,主要分析卷积神经网络、生成对抗网络和胶囊网络这几种网络模型的优缺点及应用,并对多种网络模型组合分类或将单一网络模型中的多种特征进行组合分类的发展趋势进行展望,提出目前运动想象分类任务面临的问题及发展趋势。 相似文献
2.
脑电信号识别指令多设定为单目标,导致系统误识率高,为此研究基于反向传播(Back Propagation,BP)神经网络的多类运动想象脑电信号识别系统。通过电极帽与脑电采集板的构建与搭接,完成系统硬件的设计;进行BP神经网络多目标识别指令集群的接入,同时利用分段BP神经网络功能识别模块增强系统的识别控制能力,完成系统软件的设计。最终的测试结果表明:对上述系统进行3个阶段,5组测试之后,系统在第3阶段的脑电波误识率明显控制在2%以下,系统的误识别率较低,具有较高的识别应用价值。 相似文献
3.
基于运动想象的脑电信号是用户在执行不同运动想象任务时采集到的不同脑区的电信号.受到用户的大脑结构和头皮状态等因素影响,采集到的运动想象任务信号之间混乱,从而导致大量信号被错分.鉴于此,提出一种基于改进深度森林的运动想象任务信号分类方法.首先,利用变长粒子群算法强大的寻优能力,为深度森林中每一层的随机森林和完全随机森林预测的类概率值搜寻最优权重;然后,将此权重赋予对应的类概率值,以此实现对结果修正目的;最后,利用BCI竞赛IV的数据集2a评估所提出方法的有效性.实验结果表明,相比传统的深度森林,该方法对四分类运动想象脑电信号实现了更高的分类准确率.所提出方法根据分类器预测的结果进行学习,对于提升分类器性能的研究具有重要意义. 相似文献
4.
对运动想象(MI)脑电信号的正确分类是决定基于运动想象脑电的脑-机接口(BCI)性能的关键因素。为有效地提取MI脑电信号特征、提高分类正确率,提出一种基于单形进化的BP神经网络优化算法(BPSSSE)并运用于MI脑电信号的识别,提取自相关(AR)模型参数和希尔伯特边际谱作为特征输入,通过单形进化算法优化BP神经网络学习性能,实现对MI脑电信号的分类。测试实验中,对BCI竞赛数据进行左右手分类。结果表明在4s~ 8s时间段内平均分类正确率为80.17%,最高分类正确率为87.14%,证明了本文算法在基于MI脑电的脑机交互控制系统中应用研究的有效性和可行性。 相似文献
5.
针对BP神经网络在遥感影像分类中存在易陷入局部极值、受初始权阈值影响大和网络训练时间长等问题,提出一种遗传算法(GA)结合粒子群算法(PSO)优化BP神经网络(GA-PSO-BP)的遥感影像分类方法。通过PSO对问题的解空间进行迭代寻优,将粒子群粒子个体转化为GA染色体,利用GA的复制、交叉和变异对种群所有染色体进行寻优。GA-PSO迭代寻优得到的初始权阈值直接赋给BP神经网络,解决其易陷入局部极值的问题,同时提升其训练速率。利用Landsat-8中分辨率和高分二号高分辨率遥感影像进行地物分类。结果表明,相对于最大似然法、支持向量机、传统BP、GA优化BP和PSO优化BP,GA-PSO-BP的分类精度得到有效提高,能与AlexNet卷积神经网络分类精度接近,且简单易操作。 相似文献
6.
感知器算法在运动想象脑电模式识别中的应用 总被引:1,自引:0,他引:1
基于脑电(EEG)的脑机接口(BCI)是在人脑和计算机或其它电子设备之间建立不依赖于常规大脑信息输出通路(外周神经和肌肉组织)的全新对外信息交流和控制技术。及时有效地提取和识别与运动想象相关的脑电模式可以帮助严重瘫痪病人控制光标或辅助运动设备以替代其受损的运动功能,建立一种与外界交流沟通的新途径。论文将以EEG(C3,C4)两个通道的mu节律能量作为特征向量,用感知器算法对左右手运动想象脑电模式进行识别,实验结果表明,正确识别率可达87.86%。由于感知器算法计算简单,故可以认为,感知器算法在脑机接口的应用中有较高的实用价值。 相似文献
7.
8.
针对大脑运动皮层群体神经元信号与运动行为关系的分析,提出一种Spiking神经网络(SNN)的分类算法。SNN的网络连接权值与突触连接的延时参数采用改进的粒子群优化方法(PSO)进行训练。仿真结果表明SNN分类效果优于群体向量法(PV)分类效果,有利于实现性能更高的用于神经康复的脑机接口系统。 相似文献
9.
10.
目前BP神经网络是一种有效的预测方法,但在实际应用当中存在着一些自身的缺点,为此提出了一种基于改进粒子群算法的BP神经网络。通过动态调整粒子群算法中的惯性因子ω,有效地增强了算法对非线性问题的处理能力,同时提高了算法的收敛速度和搜索全局最优值的能力。建立改进后的BP网络模型,通过该模型和逐步回归方法对某市降水量进行实例分析。分析结果表明,改进后的BP网络模型具有较高的准备预报能力和稳定性。 相似文献
11.
对多通道的四类运动想象脑电进行了研究。提出了采用表面拉普拉斯对多通道脑电进行预处理,消除各导联之间的相关性,提高信号的信噪比。实验证明表面拉普拉斯对分类正确率的提高有极大的帮助。然后使用OVR-CSP(One Versus the Rest Common Spatial Patterns)的方法,对四类运动想象任务的脑电信号进行特征提取。最后,应用设计的BP神经网络对提取的特征数据进行了分类,取得了较高的分类正确率。对基于不同频带脑电特征的分类情况进行了分析比较,得出了一些有参考价值的结论。 相似文献
12.
四类运动想象任务的脑电特征分析及分类 总被引:3,自引:0,他引:3
对多通道的四类运动想象脑电进行了研究.提出了采用表面拉普拉斯对多通道脑电进行预处理,消除各导联之间的相关性,提高信号的信噪比.实验证明表面拉普拉斯对分类正确率的提高有极大的帮助.然后使用OVR-CSP(One Versus the Rest Common Spatial Patterns)的方法,对四类运动想象任务的脑电信号进行特征提取.最后,应用设计的BP神经网络对提取的特征数据进行了分类,取得了较高的分类正确率.对基于不同频带脑电特征的分类情况进行了分析比较,得出了一些有参考价值的结论. 相似文献
13.
利用BP神经网络自适应学习,结合粒子群优化算法的全局搜索和遗传算法的快速收敛特性检测DDoS攻击行为。实验证明,新算法具有速度快、检测率高和误报率低的特点,能很好地应用于检测和抵御DDoS攻击。 相似文献
14.
自适应变异粒子群算法具备了基本粒子群算法和遗传算法优点,用此算法寻找BP网络较好的网络权值和阈值,使得BP网络的全局误差最小化,不仅可以克服基本BP算法收敛速度慢和易陷入局部极值的局限,而且模型的精度高。仿真实验结果表明,本算法与传统的分类方法相比,具有更高的正确率.验证了自适应变异粒子群算法优化BP神经网络是一种有效的分类方法。 相似文献
15.
一种改进的粒子群算法在BP网络中的应用研究 总被引:6,自引:0,他引:6
采用Sigmoid激活函数的三层前向神经网络能够以任意精度模拟复杂的非线性关系,训练算法对神经网络模式分类的性能有较大影响。基于梯度下降的BP网络存在收敛速度慢、易陷入局部极小的缺陷。粒子群算法是一种全局优化算法。本文针对粒子群算法本身存在的不足加以改进,用改进后的粒子群算法对BP网络进行训练,从而克服BP网络的一些缺陷。采用IRIS分类问题验证了本文提出的方法的有效性。实验结果表明本文采用的方法比普通PSO-BP算法效果更好。 相似文献
16.
BP神经网络模型是一种典型的前向型神经网络,具有良好的自学习、自适应、联想记忆、并行处理和非线形转换的能力,是目前应用最为广泛的一种神经网络模型。本文介绍了BP神经网络的实现以及其在数据挖掘分类方面的应用。 相似文献
17.
基于HHT运动想象脑电模式识别研究 总被引:13,自引:6,他引:13
脑机接口是一种变革性的人机交互, 其中基于运动想象(Motor imagery, MI)脑电的脑机接口是一类非常重要的脑机交互. 本文旨在探索有效的运动想象脑电特征模式提取方法. 采用在时域、频域同时具有很高分辨率的希尔伯特--黄变换(Hilbert-Huang transform, HHT),进而提取自回归(Auto regressive, AR)模型参数并计算运动想象脑电平均瞬时能量,从而构造特征向量, 最后利用能较好地适应运动想象脑电单次试验分类的支持向量机(Support vector machine, SVM)进行分类. 结果表明在Trial的5.5~7.5s期间, HHT特征提取方法平均分类正确率为81.08%, 具有良好的适应性;最高分类正确率为87.86%, 优于传统的小波变换特征提取方法和未经HHT的特征提取方法;在Trial的8~9s期间, HHT特征提取方法显著优于后两种特征提取方法. 本研究证实了HHT对运动想象脑电这一非平稳非线性信号具有很好的特征提取能力, 也再次验证了运动想象事件相关去同步(Event-related desynchronization, ERD)现象, 同时也表明运动想象脑电的脑--机交互系统性能与被试想象心理活动的质量密切相关. 本文可望为基于运动想象脑电的在线实时脑机交互控制系统的研究打下坚实的基础. 相似文献
18.
针对目前运动想象脑电(EEG)信号识别率较低的问题,考虑到脑电信号蕴含着丰富的时频信息,提出一种基于时频域的卷积神经网络(CNN)运动想象脑电信号识别方法。首先,利用短时傅里叶变换(STFT)对脑电信号的相关频带进行预处理,并将多个电极的时频图组合构造出一种二维时频图;然后,针对二维时频图的时频特性,通过一维卷积的方法设计了一种新颖的CNN结构;最后,通过支持向量机(SVM)对CNN提取的特征进行分类。基于BCI数据集的实验结果表明,所提方法的平均识别率为86.5%,优于其他传统运动想象脑电信号识别方法;同时将该方法应用在智能轮椅上,验证了其有效性。 相似文献
19.
针对运动想象脑-机交互任务模式单一、识别精度低、实用性较差等问题,采用改进的共空间模式(CSP)的特征提取方法,并利用支持向量机(SVM)与CSP融合分类方法对多类任务运动想象脑电特征进行分类识别。首先,选择特定导联上的脑电信号进行小波分解与重构,去除冗余信息;其次,利用特征参数做差的方法,得到较为明显的脑电特征;最后,通过SVM融合CSP的分类模式,对脑电特征进行多任务分类。利用BCI竞赛数据,对左手,右手,舌和脚四类运动想象任务的脑电进行识别。结果表明:分类正确率最高达到90.9%,平均正确率为86.8%,Kappa系数为0.8867,信息传输速率可达0.68 bit/trial,能够有效的获得脑电特征并较好的实现多任务运动想象脑电识别。 相似文献
20.
本文提出了基于改进型粒子群优化的BP网络学习算法。在该算法中,首先改进了传统的BP算法,有效地使得网络中输入层、隐含层和输出层结点个数达到一个最优解。然后,用粒子群优化算法替代了传统BP算法中的梯度下降法,使得改进后的算法具有不易陷入局部极小、泛化性能好等特点,并将该算法应用在了股票预测的应用设计中。结果证明明:该算法能够明显减少迭代次数,提高收敛精度,其泛化性能也优于传统BP算法。 相似文献