首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The neuroanatomical connections of the diencephalic torus lateralis and inferior lobe of the goldfish (Carassius auratus) were studied by retrograde and anterograde labeling with the carbocyanine dye DiI. Both structures have afferents originating in the central zone of the dorsal telencephalic area as well as in the supracommissural nucleus of the ventral telencephalic area, and in the secondary gustatory, tertiary gustatory, and posterior thalamic nuclei. Both structures investigated have efferents to the tertiary gustatory and posterior thalamic nuclei, as well as to the dorsal hypothalamus (dorsal hypothalamic neuropil) and superior reticular formation. The torus lateralis receives additional afferents from the secondary general visceral nucleus and, sparsely, from the dorsal tegmental nucleus. The inferior lobe receives additional afferents from the medial zone of the dorsal telencephalic area, as well as from the suprachiasmatic, posterior pretectal, central posterior thalamic, caudal preglomerular, two tegmental nuclei (T1 and T2), corpus mamillare, and, sparsely, from the cerebellar valvula. The inferior lobe has additional efferents to the dorsal and ventral thalamus and subglomerular nucleus. The lateral torus and inferior lobe are also mutually interconnected. The lateral torus and inferior lobe map topographically onto the vagal-related (intraoral) or onto the facial-related (extraoral) portions, respectively, of both the secondary and tertiary gustatory nuclei. Because the posterior thalamic nucleus is reciprocally connected with the lateral torus and inferior lobe and is further known to project in turn to the area doralis telencephali, it likely represents a quaternary gustatory projection nucleus to the telencephalon in cyprinids. Whereas the lateral torus seems to be exclusively involved with gustatory and general visceral systems, the inferior lobe has inputs from additional sensory (e.g., octavolateralis, visual) systems, and, thus, likely represents a multisensory integration center.  相似文献   

2.
Calretinin (CaR) is a calcium-binding protein that is distributed extensively in the central nervous system. It is localized in the cell bodies and neurites of specific neuronal populations and serves, therefore, as a reliable anatomical marker. Some components of the pretectocerebellar projection, which connects specific pretectal nuclei to caudal cerebellar folia, are concerned with the cerebellar control of visual reflexes. We investigated the distribution of pretectocerebellar-projecting neurons in relation to cells that show CaR immunoreactivity. Cells that project to the cerebellar cortex in the diencephalic primary visual nuclei and in other grisea, like the nucleus spiriformis medialis and the nucleus dorsofrontalis, colocalized with those that appeared to be immunolabeled intensely with anti-CaR antiserum. To explore the hypothesis of a common developmental origin of these pretectal cerebellopetal neurons, we also investigated the development of CaR-immunopositive cells in the chick pretectum and the arrival of their fibers in the cerebellum, from 10 days of incubation (stage 36) to posthatching stages. Finally, we analyzed the source of CaR+ climbing fibers and found a subpopulation of CaR+ cells in the inferior olivary nucleus. On the whole, these results suggest that there is a common developmental origin of pretectal cerebellopetal neurons, some of which share the property of CaR expression. The functional significance of this correlation needs to be investigated.  相似文献   

3.
Feeding behavior of adult rainbow trout (Oncorhynchus mykiss) is released by visual and/or chemical stimuli. Detection of either a conditioned visual or a conditioned chemical stimulus creates an excitatory feeding state within the central nervous system which turns on feeding behavior composed of swimming, turning and biting/snapping actions. Particular amino acids that are highly effective physiological taste stimuli that are also detected through olfaction (e.g. L-proline, L-alanine, L-leucine) release the initial sequence of food searching and biting/snapping behaviors; however, an effective olfactory, but poor gustatory, stimulus (e.g. L-arginine) is rarely effective behaviorally. After bilateral removal of the paired olfactory organs, visual stimuli alone release the entire set of feeding behavior patterns. Since amino acids that are highly potent physiological taste stimuli do not release either feeding behavior or reflex biting/snapping actions in adult anosmic rainbow trout, it is postulated that the olfactory system detects potent taste stimuli and provides the afferent input for arousal and the release of all feeding activity patterns.  相似文献   

4.
During retinal growth and optic axon regeneration, the differential expression of the neuronal intermediate filament proteins, plasticin and gefiltin, in the goldfish visual pathway suggests that these proteins support programmed axonal growth. To investigate plasticin and gefiltin during axonogenesis, we turned to the zebrafish, a system that is more amenable to mutational analysis. As a first step, we demonstrated that the intermediate filament compositions of goldfish and zebrafish are similar. In addition, the cDNAs for zebrafish plasticin and gefiltin were cloned and characterized. Using in situ hybridization in retina, we show increased mRNA levels for these proteins following optic nerve crush. Zebrafish plasticin and gefiltin peak and return to baseline levels of expression more rapidly than in goldfish. Furthermore, in the unoperated eye of experimental fish, there was a moderate increase in the levels of plasticin and gefiltin mRNA, suggesting that soluble factors influence the expression of these proteins. The successive expression of plasticin and gefiltin suggests that these neuronal intermediate filament proteins are integral components of axonogenesis. The cloning and characterization of cDNAs for plasticin and gefiltin permit mutational analyses of these proteins during zebrafish axonogenesis.  相似文献   

5.
Thrombospondin (TSP) is an extracellular matrix molecule that has been previously associated with neural development and neurite outgrowth in vitro. Little is known, however, about the expression of TSP in the adult nervous system. In this study, TSP localization was examined in nervous tissue from adult mouse, goldfish, newt, and adult and juvenile Xenopus. TSP was associated with neurons in the brains of all species examined. TSP was present in central nerve tracts capable of regeneration, such as the goldfish, Xenopus, and newt optic nerves, but was absent from tracts not capable of regeneration, such as the mouse optic nerve. TSP was also present in the neuropil of goldfish and newt spinal cord, but was restricted to motor neurons in mice and adult Xenopus. In addition, TSP was observed in sciatic nerves of mice, Xenopus, and newt. These results indicate a correlation between the presence of TSP and the potential for successful nerve regeneration across a wide range of animal classes.  相似文献   

6.
Cerebral asymmetries represent an important principle of the organization of nervous systems. The asymmetries of the avian visual system, with their partly complementary domains in the left and the right hemisphere, offer an excellent window for the lateralized learning and cognitive processes. These behavioural experiments are accompanied by biochemical, synaptic, electrophysiological and neuroanatomical studies which have clarified to some extent the neuronal foundations of this asymmetry. Additionally they show that most, but not all, aspects of visual lateralization depend on a minute asymmetry of prehatch visual stimulation which triggers a cascade of events transforming the embryonic nervous system into lateralized structure and functioning.  相似文献   

7.
The fine structures of immature and of developed shelled acanthors of three species belonging to the three subgroups of the Acanthocephala were investigated. Acanthors are surrounded by four eggshells (embryonic envelopes) and are composed of three syncytia: a frontal syncytium, a central syncytium, and an epidermal syncytium. Neither a sense organ nor a nervous system has been found. The central syncytium shows a mass of condensed nuclei and 12 decondensed nuclei and gives rise to 10 anterior/posterior subepidermal myofibrillar systems and 2 oblique retractor muscles. Circular muscles are missing. A single decondensed nucleus can be assigned to each of the 12 muscular systems. The epidermal syncytium embeds the other two syncytia and forms the wrinkled epidermis, which shows an extracellular glycocalyx and intrasyncytial condensations. Prominent recurved hooks, which mark the anterior end of each acanthor, and body spines are intraepidermal differentiations. Partly branched tubular infoldings of the epidermal plasma membrane of the acanthor exist and represent precursors of the pore ducts typical of the adult epidermis. Autapomorphies in the ground pattern of the monophylum Acanthocephala are the four eggshells, the early development of three syncytia, the condensed nuclei in the central syncytium, and the differentiation of ten longitudinal muscle bands and two muscle retractors and of intraepidermal hooks and spines. The syncytial organization of the epidermis with intraepidermal skeletal condensations and infoldings of the apical plasma membrane are characteristics inherited from a stem species common to Acanthocephala, Seison, and Rotifera.  相似文献   

8.
We investigated the morphological and electrophysiological properties of the Mauthner (M-) cell and its networks in the adult zebrafish (Danio rerio) in comparison with those in the goldfish (Carassius auratus). The zebrafish M-cell has an axon cap, a high resistivity structure which surrounds the initial segment of the M-axon, and accounts for an unusual amplification of the fields generated within and around it. Second, extra- and intracellular recordings were performed with microelectrodes. The resting potential was approximately -80 mV with an input resistance of approximately 0.42 M omega. The M-cell extracellular field was large (10-20 mV), close to the axon hillock, and the latency of antidromic spikes short (approximately 0.4 milliseconds), confirming a high conduction velocity in the M-axon. The extrinsic hyperpolarizing potential (EHP), which signals firing of presynaptic cells and collateral inhibition, was markedly lower at frequencies of spinal stimulation > approximately 5/second, suggesting an organization of the recurrent collateral network similar to that in the goldfish. Inhibitory postsynaptic potentials (IPSPs) were highly voltage-dependent; their decay time constant was increased by depolarizations. The presynaptic neurons which are numerous could be identified by their passive hyperpolarizing potential (PHP) produced by the M-spike current. Auditory responses, mediated via mixed synapses (electrical and chemical), had short delays and hence are well suited to trigger the escape reaction. The similarities of their properties indicate that the wealth of information generated over decades in the goldfish can be extrapolated to the zebrafish.  相似文献   

9.
Superior collicular fragments transplanted from fetal to newborn rat brains develop complex internal organization and receive visual afferents from the host providing they lie sufficiently close to the host visual pathways. This system allows investigation in vivo of special affinities between cells of the mammalian central nervous system.  相似文献   

10.
Hematolymphopoietic and inflammatory cytokines in neural development   总被引:1,自引:0,他引:1  
It is now clear that cytokines traditionally viewed as immune modulators participate in inflammatory responses within the adult nervous system. However, in the developing nervous system hematolymphopoietic cytokines also play a role unrelated to neural-immune interactions. Instead, many of these factors subserve primary regulatory functions related both to the morphogenesis and to the cellular maturation of the central and peripheral nervous systems. This article focuses specifically on cytokine actions in neural development.  相似文献   

11.
The vertebrate Hox genes have been shown to confer regional identity along the anteroposterior axis of the developing embryo, especially within the central nervous system (CNS) and the paraxial mesoderm. The notochord has been shown to play vital roles in patterning adjacent tissues along both the dorsoventral and mediolateral axes. However, the notochord's role in imparting anteroposterior information to adjacent structures is less well understood, especially as the notochord shows no morphological distinctions along the anteroposterior axis and is not generally described as a segmental or compartmentalized structure. Here we report that four zebrafish hox genes: hoxb1, hoxb5, hoxc6 and hoxc8 are regionally expressed along the anteroposterior extent of the developing notochord. Notochord expression for each gene is transient, but maintains a definite, gene-specific anterior limit throughout its duration. The hox gene expression in the zebrafish notochord is spatially colinear with those genes lying most 3' in the hox clusters having the most anterior limits. The expression patterns of these hox cluster genes in the zebrafish are the most direct molecular evidence for a system of anteroposterior regionalization of the notochord in any vertebrate studied to date.  相似文献   

12.
Authors own experimental data and data available in literature were summarised to elucidate the influence of the mollusc environment and mode of living on structural organization of tentacular and osphradial systems, receptors of the mouth labia and mantle in typical freshwater mollusc. The similarity between sensory systems of tentacles, mouth and labia was demonstrated based on the findings obtained using silver impregnation, horse radish peroxidase labelling and electron microscopy. Module pattern of organization and peculiarities of sensory organs efferent innervation were demonstrated. Bilateral symmetry and the basis of multichannel structures of sensory systems central regions were described. Specific pattern of structural organization and those common with other animals were shown. The emphasis was made on differences from the olfactory systems of ground gastropods that consist in the lack of olfactory glomeruli, the special olfactory centres, procerebri and specialized chemosensory epithelium in freshwater mollusc.  相似文献   

13.
Neuroanatomists have established that the various gross structures of the brain are divided into a large number of different processing regions and have catalogued a large number of connections between these regions. The connectional data derived from neuroanatomical studies are complex, and reliable conclusions about the organization of brain systems cannot be drawn from considering them without some supporting analysis. Recognition of this problem has recently led to the application of a variety of techniques to the analysis of connection data. One of the techniques that we previously employed, non-metric multidimensional scaling (NMDS), appears to have revealed important aspects of the organization of the central nervous system, such as the gross organization of the whole cortical network in two species. We present here a detailed treatment of methodological aspects of the application of NMDS to connection data. We first examine in detail the particular properties of neuroanatomical connection data. Second, we consider the details of NMDS and discuss the propriety of different possible NMDS approaches. Third, we present results of the analyses of connection data from the primate visual system, and discuss their interpretation. Fourth, we study independent analyses of the organization of the visual system, and examine the relation between the results of these analyses and those from NMDS. Fifth, we investigate quantitatively the performance of a number of data transformation and conditioning procedures, as well as tied and untied NMDS analysis of untransformed low-level data, to determine how well NMDS can recover known metric parameters from artificial data. We then re-analyse real connectivity data with the most successful methods at removing the effects of sparsity, to ensure that this aspect of data structure does not obscure others. Finally, we summarize the evidence on the connectional organization of the primate visual system, and discuss the reliability of NMDS analyses of neuroanatomical connection data.  相似文献   

14.
Long-term aerobic exercise improves cognition in both human and nonhuman animals and induces plastic changes in the central nervous system (CNS), including neurogenesis and angiogenesis. However, the early and immediate effects of exercise on the CNS have not been adequately explored. There is some evidence to suggest that exercise is initially challenging to the nervous system and that the plastic changes commonly associated with chronic exercise may result as adaptations to this challenge. The current experiment assessed levels of apoptosis, angiogenesis, and neurogenesis during the first week of an exercise regimen in the adult rat. The results indicate that exercise rapidly induces these processes in the hippocampus and cerebellum. The temporal pattern of these events suggests that voluntary exercise in the adult rat rapidly and transiently induces apoptosis, followed by angiogenesis. Neurogenesis is an immediate and independent consequence of exercise in the hippocampus that may require the additional metabolic support supplied by angiogenesis. This is the first report of CNS neuronal apoptosis as a consequence of exercise in the adult rat and suggests that this process is a potential mediator of rapid exercise-induced plasticity. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

15.
This investigation was stimulated by the historical confusion concerning the identity of certain pretectal nuclei and by large differences reported between species with respect to which nuclei receive retinal innervation. Subcortical visual nuclei were studied using immunohistochemistry to identify retinal projections labeled following intraocular injection of cholera toxin, b fragment. In addition, neuropeptide Y (NPY) or enkephalin (ENK) immunoreactive cells and fibers were also evaluated in the retinorecipient pretectal and thalamic areas. The results confirm the established view that the retina directly innervates the nucleus of the optic tract (NOT), posterior (PPT), and olivary pretectal (OPT) nuclei. However, the retina also innervates the hamster medial (MPT) and anterior (APT; dorsal division) pretectal nuclei, results not previously reported in rodents. A commissural pretectal area (CPT) sparsely innervated by retina is also described. The data show for the first time that the posterior limitans nucleus (PLi) receives a moderately dense, direct retinal input. The PLi does not project to the cortex and appears to be a pretectal, rather than thalamic, nucleus. All retinal projections are bilateral, although predominantly contralateral. The PLi contains a moderately dense plexus of NPY- and ENK-IR fibers and terminals. However, peptidergic fibers also traverse the ATP and connect with the dorsomedial pretectium. The OPT contains ENK- and NPY-IR neurons and fibers, but is specifically identifiable by a moderately dense plexus of ENK-IR terminals. Numerous ENK-IR neurons are found in the NOT and PPT. The latter also has moderate numbers of ENK-IR fibers and terminals, but few NPY-IR neurons or fibers. The MPT contains modest numbers of ENK-IR fibers. The APT has no NPY-IR neurons or terminals, but an occasional ENK-IR neuron is seen and there is sparse ENK-IR innervation. Peptidergic innervation of the visual nuclei does not appear to be derived from the retina. The results show a set of retinally innervated, contiguous nuclei extending from the thalamic ventrolateral geniculate nucleus dorsomedially to the midbrain CPT. These nuclei plus the superior colliculus comprise a dorsal "visual shell" embracing a central core of caudal thalamus and rostral midbrain.  相似文献   

16.
17.
The expression of cadherin-8 was mapped by in situ hybridization in the embryonic and postnatal mouse central nervous system (CNS). From embryonic day 18 (E18) to postnatal day 6 (P6), cadherin-8 expression is restricted to a subset of developing brain nuclei and cortical areas in all major subdivisions of the CNS. The anlagen of some of the cadherin-8-positive structures also express this molecule at earlier developmental stages (E12.5-E16). The cadherin-8-positive neuroanatomical structures are parts of several functional systems in the brain. In the limbic system, cadherin-8-positive regions are found in the septal region, habenular nuclei, amygdala, interpeduncular nucleus, raphe nuclei, and hippocampus. Cerebral cortex shows expression in several limbic areas at P6. In the basal ganglia and related nuclei, cadherin-8 is expressed by parts of the striatum, globus pallidus, substantia nigra, entopeduncular nucleus, subthalamic nucleus, zona incerta, and pedunculopontine nuclei. A third group of cadherin-8-positive gray matter structures has functional connections with the cerebellum (superior colliculus, anterior pretectal nucleus, red nucleus, nucleus of posterior commissure, inferior olive, pontine, pontine reticular, and vestibular nuclei). The cerebellum itself shows parasagittal stripes of cadherin-8 expression in the Purkinje cell layer. In the hindbrain, cadherin-8 is expressed by several cranial nerve nuclei. Results from this study show that cadherin-8 expression in the embryonic and postnatal mouse brain is restricted to specific developing gray matter structures. These data support the idea that cadherins are a family of molecules whose expression provides a molecular code for the regionalization of the developing vertebrate brain.  相似文献   

18.
We have generated and characterized a multi-functional polyclonal anti-brain-derived neurotrophic factor antibody. Western blot analysis, dorsal root ganglion neurite outgrowth and dorsal root ganglion neuron survival assays showed that this antibody specifically recognized brain-derived neurotrophic factor and not the other neurotrophins. Furthermore, it was capable of blocking the functional effects of brain-derived neurotrophic factor. Using this antibody, we examined the expression of brain-derived neurotrophic factor in adult rat brains by immunohistochemistry. We found distinct brain-derived neurotrophic factor immunoreactivity in several structures of the brain. These included the neocortex, piriform cortex, amygdaloid complex, hippocampal formation, claustrum, some thalamic and hypothalamic nuclei, the substantia nigra and some brainstem structures. In contrast to brain-derived neurotrophic factor messenger RNA expression, brain-derived neurotrophic factor immunoreactivity was also found in the lateral septum, bed nucleus of the stria teminalis, medial preoptic nucleus, olivery pretectal nucleus, lateral paragigantocellular nucleus and the dorsal horn of the spinal cord. In normal adult rat brains, there was little or no staining in the CA1 region or the granule cell layer of the dentate gyrus of the hippocampus. However, kainate treatments greatly increased brain-derived neurotrophic factor immunoreactivity in the pyramidal cells of the CA1 region, as well as in the dentate gyrus, CA2 and CA3 hippocampal regions. We present evidence for both the subcellular localization and anterograde transport of endogenous brain-derived neurotrophic factor in the central nervous system. The detection of brain-derived neurotrophic factor protein in several discrete regions of the adult brain, and brain-derived neurotrophic factor's dramatic up-regulation following kainate treatment, strongly supports a role of brain-derived neurotrophic factor in the maintenance of adult neurons and synapses. Since several populations of neurons lost during neurodegenerative diseases synthesize brain-derived neurotrophic factor protein, modulation of brain-derived neurotrophic factor levels may be clinically beneficial. The antibody described in this paper will be helpful in determining more precisely the functional activities of brain-derived neurotrophic factor in the adult.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号