首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为了有效提高ISG重度混合动力汽车(full hybrid electric vehicle assisted by an integrated starter generator,ISG-FHEV)发动机和电机驱动系统效率以及整车的燃油经济性,设计了一种等效燃油消耗最小控制策略(equivalent consumption minimization strategy,ECMS);在分析ISG-FHEV功率分流模式的基础上,同时考虑发动机和电机驱动系统效率,构建出包含发动机和电机驱动系统的功率分配、ISG电机和主电机间的功率分配两个控制变量的整车等效燃油消耗最小目标函数;引入庞特里亚金极小值原理(pontryagin’s minimum principle,PMP)并加入电池SOC偏差控制确定等效因子;最后,进行了仿真和对比分析;结果表明,与基于规则的控制策略相比,发动机效率提高9%,ISG电机和主电机总效率提高11.4%,百公里耗油量降低9.98%。  相似文献   

2.
单轴联结式并联混合动力汽车分层切换控制设计   总被引:1,自引:0,他引:1  
为提高整车燃油经济性,降低尾气排放,本文针对单轴联结式并联混合动力汽车(parallel hybrid electric vehicle,PHEV)提出了一种分层切换控制方法.首先,在分析发动机稳态效率和电池充放电内阻变化规律基础上,采用分层切换思想,制定了PHEV各运行模式间切换规则.然后,研究了不同目标运行模式下的能量分配策略,针对单一驱动模式和3种制动模式,设计了基于规则的转矩分配策略;针对混合模式,分别设计了行车充电/混合驱动模式下的Lyapunov优化功率分配策略以及驻车充电模式下的Willans line模型极值法功率分配策略.最后,仿真结果表明,所提出方法可确保发动机和电池工作在高效区.在UDDS+HWFET工况下,与电辅助策略相比,百公里油耗降低了40.82%,CH,CO和NOx的排放量分别减少了2.86%,4.41%和8.02%;与基于庞特里亚金最小值原理(Pontryagin’s minimum principle,PMP)的全局优化策略相比,百公里油耗降低了9.37%.  相似文献   

3.
针对增程式纯电动汽车的结构,为了提高燃油效率保证燃油经济性、限制充放电电流、延长电池使用寿命,提出了一种基于自校正变结构模糊的增程器控制策略。综合考虑电池电量SOC及其变化率、驱动电机功率需求,通过模糊控制调整增程器的输出功率进行能量分配。首先根据SOC值与驱动电机功率需求设计多输入单输出模糊控制器,输出量为增程器的功率;其次根据SOC值将电池状态分为充电模式与放电模式,对不同模式制定不同的模糊控制规则,进行模糊控制器的变结构设计;再次根据SOC值的变化率进行自校正设计,通过限制SOC变化率实现对电池充放电电流的限制,达到对电池的保护功能;最后通过Cruise仿真软件和台架测试对该控制策略进行仿真验证,结果表明燃油经济性以及电池寿命均得到有效提升。  相似文献   

4.
基于CVT的混合动力汽车建模与仿真   总被引:1,自引:0,他引:1  
建立了基于无级变速器 (Continously Variable Transmission,CVT) 的前向并联式混合动力电动汽车动力系统模型,为了研究整车动力性、经济性,根据行驶动力学方程,采用极值原理和曲面拟合法对发动机台架试验得到的数据进行了多项式拟合,建立了发动机万有特性与最佳操作曲线(Optimal Operating Line,OOL) 模型,并建立了牵引用三相感应电机动力模型以及牵引蓄电池(State of Charge,SOC)模型.同时,提出了燃油消耗最低、蓄电池充放电平衡的能量分配控制策略,进行整车动力性仿真计算,仿真结果表明在保证循环结束电池充放电基本平衡的同时发动机燃油消耗最低,仿真试验对比结果验证了建立的模型的精确性.  相似文献   

5.
在履带车辆能量控制策略的研究中,相比于传统的履带车辆单一的动力源,混合动力履带车辆是多能源动力系统,能量分配控制策略制约着动力系统的运行效率.为了优化能量分配控制以及改善整车的燃油经济性,提出了在发动机多点转速下,采用模糊控制理论的动力系统功率分配控制策略;建立了面向控制的整车动态仿真模型,包括驾驶员模型,动力电池组模型,发动机模型,电机模型以及整车动力学模型.根据建立的车辆动态模型,采用模糊分配控制策略,在不同的SOC初值、不同的循环工况以及不同的控制策略下仿真,结果表明,利用模糊规则的能量分配控制策略燃油经济性较好,并且能保持动力电池组SOC平衡在在一定范围内.  相似文献   

6.
为了改善插电式混合动力汽车的燃油消耗和排放, 开展多目标随机模型预测控制策略的研究. 首先, 建立适用于模型预测的多元线性回归的发动机和电池模型, 建立融合燃油消耗和排放的多目标价值函数的模型预测控制, 随后, 基于随机驾驶员模型未来时刻的车速, 结合交通信息并利用动态规划(DP)算法进行参考电荷状态(SOC)优化, 进而建立多目标随机模型预测控制策略. 最后, 通过与DP, MPC等策略进行对比验证, 及给出两组不同权值进行多目标控制效果分析. 结果表明, 该策略的燃油消耗和排放最接近DP的控制效果, 且设置不同权重值可获得相应的控制目标, 说明该策略对提升燃油消耗和排放的多目标性能的有效性.  相似文献   

7.
与传统金枪鱼钓船相比,混合动力推进的金枪鱼钓船具有燃油消耗少、污染小等优点.针对延绳钓金枪鱼钓船,设计了并联式混合动力驱动系统.为满足渔船的不同动力需求,通过模糊控制策略合理控制分配动力的输出.通过Matlab/Simulink的仿真研究,金枪鱼钓船的推进效率和燃油经济性均得到提升,有效地验证了混合动力系统和模糊逻辑控制策略的可行性.  相似文献   

8.
为解决混合动力系统实时优化控制问题,本文提出了一种基于二次型性能指标最优的混合动力汽车功率分配优化方案.通过合理的假设和近似,建立了混合动力系统的线性模型,并利用二次型最优控制理论将混合动力最优控制问题转化为二次型最优调节问题进行求解,得到了一个结构简单的实时优化控制算法.5种道路工况下的仿真结果表明,本文提出的控制方法在未来道路工况未知的情况下能够实现混合动力系统的实时优化控制,且节油率与离线计算以燃油消耗最小为性能指标的全局最优控制的节油率相近.  相似文献   

9.
针对传统插电式混合动力汽车智能控制策略计算量大,难以实现实时最优控制的问题,提出了基于蓄电池充放电管理的插电式混合动力汽车预测控制策略.利用实测通勤插电式混合动力汽车车速信息,以蓄电池荷电状态为系统状态变量,以蓄电池充放电功率为系统控制变量,插电式混合动力汽车燃油消耗量最低为系统性能指标,设计了插电式混合动力汽车的模型预测控制智能优化算法,运用连续广义最小残量方法求解最优控制问题.在Matlab/Simulink与GT-POWER联合仿真平台上进行仿真,实验结果验证了所设计的模型预测控制算法不仅可以大幅度提高混合动力汽车的燃油经济性,而且能够满足实时控制的要求.  相似文献   

10.
何盼  郑志浩  袁月  谭春 《软件学报》2017,28(2):443-456
在需要长时间可靠运行的软件系统中,由于持续运行时间和任务响应速度的要求增加,工作组件在被探测到失效后将被冗余组件实时替换.但现有可靠性优化研究通常假设冷备份冗余在所有积极冗余组件失效后才使用.针对支持实时替换的混合冗余策略,对其冗余度优化分配进行研究.该策略不仅能够保障系统可靠性,而且能够保障系统性能,故选用实时可用性和任务完成效率两类约束条件,建立冗余配置代价最小化模型.基于马尔可夫链理论对可靠性及性能两类系统指标进行定量分析;采用数值计算方法对非线性的状态分析模型进行计算;改进二元组编码遗传算法对上述优化问题进行求解.采用实例对串并联系统中实时可用性及任务完成效率的分析进行了说明,并对优化冗余分配模型进行了验证.实验结果表明,在相同冗余度下,支持实时替换的混合冗余策略在任务完成效率方面优于传统的混合冗余策略.所以,在相同约束条件下不同混合冗余策略需要采用不同的冗余优化配置方案.  相似文献   

11.
Today, much information from traffic infrastructures and sensors of ego vehicle is available. Using such information has a potential for internal combustion engine vehicle to reduce fuel consumption in real world. In this paper, a powertrain controller for a hybrid electric vehicle aiming to reduce fuel consumption is introduced, which uses information from traffic signals, the global positioning system and sensors, and the preceding vehicle. This study was carried out as a benchmark problem of engine and powertrain control simulation and modeling 2021 (E-COSM 2021). The developed controller firstly decides reference acceleration of the ego vehicle using the traffic signal and the position information and the preceding vehicle speed. The acceleration and deceleration leading to increase in unnecessary fuel consumption is avoided. Next, the reference engine, generator, and motor torques are decided to achieve the reference acceleration and minimize fuel consumption. In addition, the reference engine, generator and motor torques were decided by the given fuel consumption map for the engine, and by the virtual fuel consumption maps for the generator and the motor. The virtual fuel consumption is derived from the efficiency maps of the generator and the motor using a given equivalent factor, which converts electricity consumption to fuel for the generator and the motor. In this study, a controller was designed through the benchmark problem of E-COSM 2021 for minimizing total fuel consumption of the engine, the generator, and the motor. The developed controller was evaluated in driving simulations. The result shows that operating the powertrain in efficient area is a key factor in reducing total fuel consumption.  相似文献   

12.
Hybrid electric vehicles require an algorithm that controls the power split between the internal combustion engine and electric machine(s), and the opening and closing of the clutch. Optimal control theory is applied to derive a methodology for a real-time optimal-control-based power split algorithm. The presented strategy is adaptive for vehicle mass and road elevation, and is implemented on a standard Electronic Control Unit of a parallel hybrid electric truck. The implemented strategy is experimentally validated on a chassis dynamo meter. The fuel consumption is measured on 12 different trajectories and compared with a heuristic and a non-hybrid strategy. The optimal control strategy has a fuel consumption lower (up to 3%) than the heuristic strategy on all trajectories that are evaluated, except one. Compared to the non-hybrid strategy the fuel consumption reduction ranged from 7% to 16%.  相似文献   

13.
混合动力系统能量管理策略的实时优化控制算法   总被引:1,自引:0,他引:1  
夏超英  张聪 《自动化学报》2015,41(3):508-517
依据最优控制理论得到的混合动力汽车能量管理策略与未来的驾驶需求相关联,无法解决算法的实时性问题.本文另辟蹊径,结合规则构造二次型性能指标来限制发动机功率的大幅度频繁波动,间接地降低油耗.为此,在对混合动力系统近似线性处理的基础上,利用二次型最优跟踪理论推导出定常的反馈控制律,将发动机和电机功率表示成系统当前状态和车速指令的线性函数并应用于非线性实车系统.仿真结果表明,本文提出的能量管理实时控制算法可以达到良好的节油效果, 对不同的道路工况和电池初始荷电状态有良好的适应性.  相似文献   

14.
This paper presents a fuzzy-logic-based energy management and power control strategy for parallel hybrid vehicles (PHV). The main objective is to optimize the fuel economy of the PHV, by optimizing the operational efficiency of all its components. The controller optimizes the power output of the electric motor/generator and the internal combustion engine by using vehicle speed, driver commands from accelerator and braking pedals, state of charge (SOC) of the battery, and the electric motor/generator speed. Separate controllers optimize braking and gear shifting. Simulation results show potential fuel economy improvement relative to other strategies that only maximize the efficiency of the combustion engine.  相似文献   

15.
The paper focuses on investigating thermal-transients effects, associated to intermittent use of internal combustion engine (ICE), on fuel economy and hydrocarbon (HC) emissions of series hybrid solar vehicles (HSVs). An offline, non-linear constrained optimization is set-up to individuate the ICE power trajectory that simultaneously minimizes fuel consumption, suitably operates the battery and fully exploits daily solar contribution. The results highlight the importance of including thermal transients in HSV energy management. The combined effects of engine, generator and battery losses, along with cranking energy and thermal transients, produce non-trivial solutions for the engine/generator group, which should not necessarily operate at its maximum efficiency.  相似文献   

16.
This study deals with the control of a hybrid vehicle powertrain, composed of three actuators (one engine, two electric machines). This powertrain belongs to the electric-infinitely variable transmission class. In order to achieve low fuel consumption, drivability and electric power management, controllers must achieve simultaneously three specifications: tracking engine speed, wheel-torque and battery power references. Decoupled controlled-output behaviours and maximal performances are also required. In order to imitate a classical powertrain control structure, the control structure is split into two parts. The interest is to decouple transmission speed ratio control and wheel torque control. A model-based design approach is proposed, that directly deals with robustness and decoupling, in a full multivariable and frequency-dependent framework (H synthesis). Closed-loop simulations are presented. Stability and performances faced to disturbances and non-linearities are also evaluated, using the theory of linear parameter varying systems.  相似文献   

17.
针对常用混合动力汽车(Hybrid electric vehicle,HEV)中锂离子电池在功率波动较大时难以满足需求,以及单个驱动周期内HEV燃油能耗大且能量不能很好回收等问题,研究采用锂离子电池和超级电容器混合储能系统(Lithium-ion battery and super-capacitor hybrid energy storage system,Li-SC HESS)与内燃机共同驱动HEV运行.结合比例积分粒子群优化算法(Particle swarm optimization-proportion integration,PSO-PI)控制器和Li-SC HESS内部功率限制管理办法,提出一种改进的基于庞特里亚金极小值原理(Pontryagin's minimum principle,PMP)算法的HEV能量优化控制策略,通过ADVISOR软件建立HEV整车仿真模型,验证该方法的有效性与可行性.仿真结果表明,该能量优化控制策略提高了HEV跟踪整车燃油能耗最小轨迹的实时性,节能减排比改进前提高了1.6%~2%,功率波动时减少了锂离子电池的出力,进而改善了混合储能系统性能,对电动汽车关键技术的后续研究意义重大.  相似文献   

18.
混合动力汽车通常由内燃机和电池两种不同的动力源驱动,对于给定的功率需求,如何分配两种动力源的输出功率,使得整个循环的耗油量达到最小是混合动力系统控制表示法需要解决的问题.本文采用改进动态规划方法来优化两种动力源的输出功率,并用PSATv6.1进行了系统仿真.仿真结果表明,与开关式相比,该方法能有效的降低串联混合动力汽车...  相似文献   

19.
Hybrid electric buses have been a promising technology to dramatically lower fuel consumption and carbon dioxide (CO2) emission, while energy management strategy (EMS) is a critical technology to the improvements in fuel economy for hybrid electric vehicles (HEVs). In this paper, a suboptimal EMS is developed for the real-time control of a series–parallel hybrid electric bus. It is then investigated and verified in a hardware-in-the-loop (HIL) simulation system constructed on PT-LABCAR, a commercial real-time simulator. First, an optimal EMS is obtained via iterative dynamic programming (IDP) by defining a cost function over a specific drive cycle to minimize fuel consumption, as well as to achieve zero battery state-of-charge (SOC) change and to avoid frequent clutch operation. The IDP method can lower the computational burden and improve the accuracy. Second, the suboptimal EMS for real-time control is developed by constructing an Elman neural network (NN) based on the aforementioned optimal EMS, so the real-time suboptimal EMS can be used in the vehicle control unit (VCU) of the hybrid bus. The real VCU is investigated and verified utilizing a HIL simulator in a virtual forward-facing HEV environment consisting of vehicle, driver and driving environment. The simulation results demonstrate that the proposed real-time suboptimal EMS by the neural network can coordinate the overall hybrid powertrain of the hybrid bus to optimize fuel economy over different drive cycles, and the given drive cycles can be tracked while sustaining the battery SOC level.  相似文献   

20.
The combination of electric motors and internal combustion engines in hybrid electric vehicles (HEV) can considerably improve the fuel efficiency compared to conventional vehicles. In order to use its full potential, a predictive intelligent control system using information about impending driving situations has to be developed, to determine the optimal gear shifting strategy and the torque split between the combustion engine and the electric motor. To further increase fuel efficiency, the vehicle velocity can be used as an additional degree of freedom and the development of a predictive algorithm calculating good choices for all degrees of freedom over time is necessary.In this paper, an optimization-based algorithm for combined energy management and economic driving over a limited horizon is proposed. The results are compared with results from an offline calculation, which determine the overall fuel savings potential through the use of a discrete dynamic programming algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号