共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
研究了一类不确定非线性分布参数系统的迭代学习控制问题.基于几何分析方法,给出了分布参数系统一种新的具有自适应因子的非线性迭代学习控制算法.导出了新算法的收敛条件,并利用广义λ范数从理论上证明了新算法的收敛性. 相似文献
3.
针对一类非正则分布参数系统的迭代学习控制问题进行讨论, 该类分布参数系统由抛物型偏微分方程构成. 基于非正则系统的特点, 使用D型学习律构建得到迭代学习控制律, 并基于压缩映射原理, 证明得到输出跟踪误差在??2 范数意义下沿迭代轴方向的收敛性结论. 仿真算例表明了所提出结论的有效性.
相似文献4.
基于向量图分析的分布参数系统迭代学习控制 总被引:3,自引:0,他引:3
针对一类不确定线性分布参数系统的迭代学习控制问题进行了讨论。基于向量图分析方法,提出了分布参数系统的一种新的迭代学习控制算法,该算法与现有算法不同,具有非线性形式。此外,利用 范数对所提新算法进行了完整的收敛性分析。 相似文献
5.
针对线性时不变离散系统的跟踪问题提出一种高阶参数优化迭代学习控制算法.该算法通过建立考虑了多次迭代误差影响的参数优化目标函数,求解得出优化后的时变学习增益参数.从理论上证明了:对于线性离散时不变系统,该算法在被控对象不满足正定性的松弛条件下仍可保证跟踪误差单调收敛于零.同时,采用之前多次迭代信息的高阶算法具有更好的收敛性和鲁棒性.最后利用一个仿真实例验证了算法的有效性. 相似文献
6.
非线性系统高阶迭代学习算法 总被引:2,自引:1,他引:2
结合迭代学习控制算法中的开环和闭环方案,本文针对更一般的非线性系统,讨论高阶算法的广泛适用性。理论和仿真结果表明了高阶算法在输出跟踪和干扰抑制方面的有效性。 相似文献
7.
迭代学习控制能够实现期望轨迹的完全跟踪而被广泛关注,但是采样迭代学习控制成果目前还比较少。针对一类有相对阶和输出延迟的非线性采样系统,研究了高阶迭代学习控制算法。利用Newton-Leibniz公式、贝尔曼引理和Lipschiz条件证明了当系统的采样周期足够小,迭代学习初态严格重复,且学习增益满足要求的条件,那么系统输出在采样点上收敛于期望输出。对一阶和二阶学习算法的仿真表明高阶算法在收敛速度上比一阶有明显改善。 相似文献
8.
9.
非线性系统高阶迭学习算法 总被引:5,自引:0,他引:5
结合迭代学习控制算法中的开环和闭环方案,本文针对更一般的非线性系统,讨论高阶算法的广泛适用性。理论和仿真结构表明了高阶算法的输出跟踪和干扰抑制方面的有效性。 相似文献
10.
11.
研究了一阶强双曲分布参数系统的迭代学习控制问题.首先利用Fourier变换和半群方法导出了系统状态的适应解.进而基于强双曲条件和Plancheral定理,在允许迭代过程中初值存在一定偏差条件下,给出并证明了系统在P型迭代学习控制算法下的收敛条件.最后应用实例说明了所提方法的有效性. 相似文献
12.
This article deals with the problem of iterative learning control algorithm for a class of nonlinear parabolic distributed parameter systems (DPSs) with iteration‐varying desired trajectories. Here, the variation of the desired trajectories in the iteration domain is described by a high‐order internal model. According to the characteristics of the systems, the high‐order internal model‐based P‐type learning algorithm is constructed for such nonlinear DPSs, and furthermore, the corresponding convergence theorem of the presented algorithm is established. It is shown that the output trajectory can converge to the desired trajectory in the sense of (L2,λ) ‐norm along the iteration axis within arbitrarily small error. Finally, a simulation example is given to illustrate the effectiveness of the proposed method. 相似文献
13.
14.
15.
In this paper robust multivariable controllers for parabolic distributed parameter systems will be discussed. The purpose of a robust controller is to achieve output regulation, disturbance rejection and insensitivity against some perturbations in the system's and controller's parameters. The robust controller consists of two parts: the unstable servo-compensator and the stabilizing compensator. The servo-compensator will be fixed on the basis of the spectrum of the reference and disturbance signals. The purpose of the stabilizing compensator is to stabilize the extended unstable system that consists of the stable plant and the servo-compensator. In this paper it is proved that the stabilizing compensator can be decomposed into a scalar gain and a matrix gain. A simple sufficient condition for finding stabilizing matrix gains will be given and a straightforward way to compute the gains will be presented. The proposed method is practical in the sense that the dimension of the controller is finite and small, output feedback is used and tuning the controller can be done with the information that can be measured from the stable plant with input-output measurements. To the authors’ knowledge, the main results are new even for finite-dimensional systems. 相似文献
16.
This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis. 相似文献
17.
In this paper, we present a novel robust Iterative Learning Control (ILC) control strategy that is robust against model uncertainty as given by an additive uncertainty model. The design methodology hinges on ??∞ optimization, but formulated such that the obtained ILC controller is not restricted to be causal, and inherently operates on a finite time interval. Optimization of the robust ILC (R‐ILC) solution is accomplished for the situation where any information about structure in the uncertainty is discarded, and for the situation where the information about the structure in the uncertainty is explicitly taken into account. Subsequently, the convergence and performance properties of resulting R‐ILC controlled system are analyzed. On an experimental set‐up, we show that the presented R‐ILC control strategy can outperform an existing linear‐quadratic norm‐optimal ILC approach and an existing causal R‐ILC approach based on frequency domain ??∞ synthesis. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献