共查询到18条相似文献,搜索用时 109 毫秒
1.
为了提高协同进化多目标进化算法的全局收敛性,提出了一种调用协同进化算子的自适应方法。其基本思想是:根据目标函数的变化率自动调用协同进化算子;当种群进化正常时,调用合作算子和吞并算子;当种群进化接近停滞时,调用分裂算子。通过数值实验用量化指标研究了新算法的收敛性和分布性,结果表明,与常规协同进化多目标进化算法相比,新算法不仅具有良好的分布性,而且全局收敛性有了明显的提高。 相似文献
2.
3.
针对PSO算法易陷入局部最优,发生早熟这一先天缺陷,在一定的误差容忍度下,借鉴协同进化理论中主体的能动性,系统的非线性,个体与环境的协同进化及个体的自适应性等优良特性,利用Feigenbaum迭代构造混沌序列,对粒子的位置和速度进行初始化取值;采用非线性和自适应调整策略对算法中的自我学习因子、社会学习因子及惯性权重进行取值,从而形成了动态双重自适应PSO改进算法(DDAPSO)。在单模态和多模态Benchmark函数上对上述算法进行仿真,并与其他5种算法进行了对比,仿真结果表明,DDAPSO算法较其他算法在求解精度、寻优效率和稳定性上具有极大的优势,表现出了较强的寻找全局最优解的能力,具有广泛的应用前景。 相似文献
4.
5.
提出一种自适应协同进化算法,对其进行了数学描述。设计了一个支持该算法的创新设计系统,为分布式环境下设计人员的协作和创新思路的开拓提供了支撑平台。算法中自适应学习的引入为在设计中自动而有效地使用先验智能提供了可行性。最后以一个建筑实例的设计为例对所述的方法和系统加以描述。 相似文献
6.
基于混沌搜索的自适应差分进化算法 总被引:2,自引:0,他引:2
提出一种基于混沌搜索的自适应差分进化算法(CADE),该算法在计算过程中自适应地调整交叉率,在搜索初期保持种群多样性的同时增强算法的全局收敛性。具有较强局部遍历搜索性能的混沌搜索的引入使得算法具有较好的求解精度,增加搜索到全局最优解的概率。对几种典型的测试函数对CADE进行了测试,实验结果表明,该算法能有效地避免早熟收敛,具有良好的全局收敛性。 相似文献
7.
基于协同进化微粒群算法的神经网络自适应噪声消除系统 总被引:3,自引:1,他引:3
在分析前向神经网络结构的基础上,定义了一个与随机数对应的布尔向量,实现了前向神经网络的网络结构与权值联合编码;将网络结构参数作为协同进化微粒群算法子群的划分标志,构造了一种用于神经网络进化设计的协同进化微粒群算法,实现了神经网络的结构和权值协同自适应进化设计,应用于神经网络噪声消除系统,取得了比较好的效果。 相似文献
8.
针对基本蝙蝠算法(BA)寻优精度不高、收敛速度慢和易早熟收敛的问题,提出一种改进的具有自适应变异机制的蝙蝠算法,用以求解复杂函数问题;利用K-means聚类对蝙蝠种群进行初始化,使种群在搜索空间分布更为均匀;采用根据迭代次数自适应变化的控制概率Pt判断算法是否进行高斯变异,增强种群多样性,促使蝙蝠个体跳出局部极值点;将自然选择思想引入BA,提高算法搜索速度,避免早熟收敛;选取几个典型函数进行测试,结果表明改进算法优化性能有了显著提高,具有较快的收敛速度,较高的寻优精度、收敛稳定性和收敛可靠性,验证了改进蝙蝠算法(IBA)的有效性及优越性。 相似文献
9.
为解决差分进化算法后期收敛易陷入局部最优和早熟收敛的问题,提出一种群体智能优化算法,即协同智能的蝙蝠差分混合算法。利用蝙蝠个体脉冲回声定位的特点,与差分种群相互协作,在当前最优解gbest附近进行一次详细搜索,有效增加种群的多样性,跳出局部最优。通过蝙蝠种群和差分种群两个种群的相互协作,较好平衡全局搜索和局部开发之间的能力。为验证算法有效性,选用9个常用的基准测试函数和5个0-1背包问题,与标准粒子群算法、带高斯扰动的粒子群算法、蝙蝠算法、差分算法、烟花算法相对比,仿真实验表明,所提算法总体性能优于其它5种算法。 相似文献
10.
11.
基于状态空间模型进化算法(SEA)是一种新颖的实数编码进化算法,在工程优化问题中具有广阔的应用前景。为了完善SEA的理论体系,促进SEA在工程优化问题中的应用研究,利用齐次有限Markov链对SEA的全局收敛性进行分析, 证明了SEA不是全局收敛的。通过限定SEA状态进化矩阵内元素的取值范围,同时引入弹力搜索得到改进型弹力状态空间模型进化算法(MESEA)。分析结果表明,弹力搜索能提高SEA的搜索效率。最后得到了MESEA全局收敛的结论,为算法在工程优化问题中的应用提供了理论依据。 相似文献
12.
针对基本遗传算法收敛速度慢、稳定性差、容易陷入局部最优等缺点,提出了一种扩大交叉规模的自适应遗传算法并用典型测试函数加以仿真研究。通过仿真可以看出,新算法具有搜索精度高、收敛速度快、抗早熟能力强等特点。 相似文献
13.
14.
该文以求解一些NP问题(如TSP问题和背包问题)为例,分析了运行在量子计算机上的量子搜索算法和运行在经典计算机上的进化搜索算法的本质区别,同时也论述了它们之间相互结合的方法,特别是运行在经典计算机上的量子驱动的进化算法。 相似文献
15.
本文通过对新提出的求解全局优化问题的云搜索算法[1]进行分析,可以看出算法的整个搜索过程包含飘移算子、降雨生云算子、收缩扩张算子。倘若收缩扩张算子失效,那么算法将在比较坏的情形下进行搜索。在此情形下,我们利用概率论的知识分析了算法的收敛性。分析结果表明,云搜索算法依概率1收敛到全局最优解。 相似文献
16.
17.