共查询到19条相似文献,搜索用时 62 毫秒
1.
对压入法熔炼铝锂合金的工艺方法进行了研究,对熔炼过程中锂的损失、合金的精炼、熔剂的制备问题进行了探索。发现锂的损失主要源于锂的氧化,良好的保护措施可以减少锂的损失。在压入法工艺中,精炼可以采用两次精炼的方法,使用高纯氩气对铝锂合金进行精炼效果良好。差热分析的结果表明60%LiCl加40%LiF混合熔剂比50%LiCl加50%LiF熔剂更为优越。 相似文献
2.
根据生产经验,用石墨坩埚熔炼铝锂合金,锂的损失一般稳一在7%左右。坩埚使用寿命为2~3次。本文研究的复合涂层,是以氧化铝打底,氧化镁作为复面。在熔炼铝锂合金时。可以使锂的损耗由7%降低到0.5%以下,并且显著地延长了石墨坩埚寿命,使用次数达到18次。复合涂层制作方法简便,使用效果好,便于推广应用于生产。 相似文献
3.
应用铝锂合金板材生产蒙皮等大型薄壁结构零件是航空制造轻量化的重要途径,本研究利用单向拉伸系统测试了不同热处理状态下2198铝锂合金板材沿着轧向(RD)、45°和横向(TD)方向的力学行为,研究了热处理对其各向异性的影响,并从晶体学织构、时效相和断口形貌分析了微观机制.结果 表明,新淬火和自然时效状态的2198铝锂合金板... 相似文献
4.
铝锂合金具有密度低,强度和弹性模量高以及耐热、耐蚀性好等优点,因而在航空中得到应用。但是,这种合金因塑性差、成型困难,尤其是单向轧制机械纤维(流线)和晶体学纤维形成的各向异性,大大地限制了其材料的应用。为此,西北有色金属研究院从改变轧制方式、调整合金成分、提高合金质量等方面着重研究了铝锂合金热处理工艺与织构组织的关系,试图达到改善组织结构、减小各向异性的目的。 1 实验 试样用俄罗斯进口的1420半成品合金板,化学成分为(wt%):2.011Li,5.53Mg,0.10Zr,余量Al。原始板厚为2.0mm,试样状态及热处理工艺如下… 相似文献
5.
应用铝锂合金板材生产蒙皮等大型薄壁结构零件是航空制造轻量化的重要途径,本文利用单向拉伸系统测试了不同热处理状态下2198铝锂合金板材沿着轧向(RD)、45°和横向(TD)方向的力学行为,研究了热处理对其各向异性的影响,并从晶体学织构、时效相和断口形貌分析了微观机制。结果发现,新淬火和自然时效状态的2198铝锂合金板材具有相似的各向异性,RD方向具有最高的强度、最高的硬化率和最低的延伸率,45°方向则具有最低的强度、最低的硬化率和最高的延伸率,主要原因是轧制板材存在强烈的<112>{110}织构。但是,经人工时效后的2198铝锂合金板材的各向异性因不均匀析出的T1相而发生了明显的变化,45°方向上的强度得到了较大程度的提升,具有和TD方向相同的水平,硬化率发生了明显的降低,TD方向成为硬化率最大的方向,而延伸率和断口形状的各向异性并未变化,可见T1相导致2198铝锂合金板材发生了各向异性的强化,却对断裂行为的各向异性影响较小。本文的研究旨在明确热处理对2198铝锂合金板材各向异性力学行为的影响,为开发其塑性成形工艺提供理论依据,有助于提出2198铝锂合金板材强韧化的新思路。 相似文献
6.
7.
蒋炳玉 《稀有金属材料与工程》1995,24(2):50-54
研究了熔铸Al-2.8%Li^6合金管坯过程中锂的损耗及氢量的变化。由试验和计算指出,合理地选择熔铸工艺可使锂的损耗降至2%以下,合金的增氢现象由“吸湿”引起。 相似文献
8.
研究了不同预轧制变形时效对固溶态2055铝锂合金组织和力学性能的影响。结果表明,对固溶2055铝锂合金在时效前进行预轧制变形可显著缩短峰值时效时间、提高合金硬度和强度。当预轧制变形量为0、3%和10%时,2055铝锂合金分别在155℃下时效40、30和28 h达到峰值硬度(HV),分别为207.66、215.31和220.07。10%预轧制+155℃×28 h峰时效合金的屈服强度、抗拉强度分别达到562.64 MPa和622.04 MPa,比未预轧制、3%预轧制峰时效合金分别提高了67%、21%和43%、8%,大塑性变形诱导高密度位错促进析出相大量均匀弥散析出是其力学性能提高的主要原因。 相似文献
10.
利用电磁模拟微重力装置熔炼高锂含量铝锂合金。试验结果表明:Li的质量分数为5%~10%时不产生偏析;合金密度达到了超轻合金的密度范围。通过改进坩埚结构、加热方法、热处理工艺等措施,合金的性能接近已实际应用的8090合金。 相似文献
11.
采用光学显微镜、扫描电镜、能谱仪及X射线衍射仪等微观分析手段,研究不同热处理工艺条件下2195铝锂合金电子束焊接头焊缝区的显微组织演变,探讨接头的焊后热处理强化机制。结果表明,焊后热处理可显著改善接头区域的显微组织,促进强化相的析出,有利于提高接头的力学性能。经过焊后固溶+双级时效热处理,焊态下接头熔合线附近存在的等轴细晶区消失,β′、θ′和T1等强化相在接头焊缝区析出,与单级时效处理工艺相比,双级时效处理的析出强化效果更为显著。力学性能测试表明,经过双级时效热处理后,接头的抗拉强度达到492.5 MPa,为母材强度的90.4%。接头拉伸断口表面存在许多小韧窝,并伴随出现解理面,接头呈韧-脆混合型断裂特征。 相似文献
12.
采用电弧熔炼方法设计制备了AlCo CrFeNiTi_(0.2)合金,发现铸态时的合金形成了B2相和bcc相,且室温压缩性能良好,压缩塑性为32.6%,屈服强度为1530.4 MPa,抗压强度为4035.0 MPa,硬度接近6000 MPa。在550、800和1050℃对其进行热处理,采用水冷的方式以保存高温相,3个温度对应的相组成分别为bcc+B2、bcc+B2+fcc+σ和bcc+B2+fcc,热处理后合金脆性和硬度升高。采用磁悬浮熔炼制备了大块AlCo CrFeNiTi_(0.2)合金,该状态合金成分分布比较均匀,形成了bcc+B2+σ3相,在600℃时压缩塑性为35.0%,且仍能保持1486.7 MPa的屈服强度,耐高温性能较好。 相似文献
13.
采用光学显微镜(OM)和扫描电镜(SEM)分析研究了Zr-Sn-Nb-Fe锆合金板材在热轧及退火→中间冷轧及退火→成品轧制及退火的全工艺流程中晶粒组织的演变规律。结果表明,热轧后合金组织沿轧制方向呈带状分布,晶粒粗大并破碎变形;中间冷轧和成品轧制后合金为沿轧制方向带状分布的细小形变组织,合金组织明显细化;中间退火和成品退火后合金中晶粒再结晶程度较热轧退火时明显提高,晶粒取向差逐渐向正态分布变化,晶粒组织也逐渐均匀化和细化,最终获得细小、均匀分布的完全再结晶晶粒组织,晶粒度12级。 相似文献
14.
研究热处理工艺对2A97Al-Li合金拉伸性能的影响。结果表明:从传统T8工艺改进的、具有预时效和中间变形的热处理工艺可以有效地改进Al-Li合金的拉伸性能。合金经该热处理工艺处理后,在峰时效条件下,基体中析出大量的T1相,同时,晶界无第二相析出,并且晶界上无沉淀析出带不明显。峰时效合金的抗拉强度、屈服强度和伸长率分别为597MPa、549MPa和7.4%。此外,建立BP人工神经网络模型对经不同热处理工艺处理的合金的拉伸性能进行预测,所得预测结果与实验结果吻合较好,表明该人工神经网络模型可用于预测2A97Al-Li合金的拉伸性能。 相似文献
15.
采用SEM、XRD和电化学方法研究Mg-Hg-Ga合金在铸态、均匀化处理态、轧制态等不同状态下的显微组织和电化学性能;对轧制后的Mg-Hg-Ga合金板材在150~300℃下退火,研究退火温度对其显微组织和电化学性能的影响。结果表明:400℃保温24 h可以消除合金非平衡凝固时的合金元素在晶界处的偏聚,并改善了合金的电化学性能。经多道次热轧后的Mg-Hg-Ga合金板材在不同温度退火后,材料的电化学活性随退火温度的升高先提高后有所降低,在250℃退火4 h达到最高,稳定电位为-1.849 V;耐腐蚀性能随退火温度的升高不断降低,退火温度从150℃升高到300℃时,材料的腐蚀电流密度从3.525×10-4 A/cm2增大到2.438×10-3 A/cm2。这与合金中弥散分布的球状析出相的数量和尺寸有关。 相似文献
16.
17.
利用X射线衍射仪、扫描电镜、透射电镜和拉伸试验等手段,研究了75%压下量的冷轧及1073 K下保温1 h热处理后不同冷却方式(空冷和炉冷)对Al0.3CoCrFeNi高熵合金微观组织和力学性能的影响。结果表明:铸态以及冷轧态Al0.3CoCrFeNi合金均为FCC单相结构,经热处理后炉冷及空冷合金均为FCC+BCC双相结构。铸态合金经冷轧以后强度显著提升但塑性大幅度下降。因细晶强化、孪晶以及析出相强化作用,热处理后炉冷合金具有良好的综合力学性能,其抗拉强度为1289 MPa,约为铸态试样的两倍(719 MPa),最大伸长率为28.7%。因析出相增多以及孪晶尺寸增大,与空冷合金相比,炉冷合金在不损失塑性的前提下,抗拉强度增加。 相似文献
18.
采用激光选区熔化工艺(SLM)制备了Inconel 718合金,并对合金分别进行了1050 ℃×1 h固溶和1050 ℃×1 h固溶+720 ℃×8 h+620 ℃×8 h双级时效热处理。结合微观组织、拉伸性能和断裂特征分析,研究了热处理工艺对SLM制备的Inconel 718合金组织和力学性能的影响。结果表明:固溶处理后合金内Laves相溶解,位错密度显著降低,材料的强塑性匹配较打印态得到良好的改善。经过时效热处理后,γ′和γ″强化相析出使合金强度大幅度提高的同时,保留了一定的塑性。 相似文献
19.
研究了低高温双重热处理对激光选区熔化(Selective Laser Melting,SLM)成形TC4钛合金组织特征及断裂韧性的影响规律。结果表明:低温退火成形态合金横截面显微组织表现为大量针状马氏体α′相和β相,纵截面表现为沿成形方向生长的柱状晶,晶内针状马氏体α′相板条与成形方向的夹角成45o左右。热处理后,针状α′相转变为板条α相,形成α+β的板条组织。随着热处理温度的升高,α片层逐渐粗化,裂纹扩展路径曲折程度增加,断裂韧性由成形态的43.1 MPa?m1/2,逐渐提高至109 MPa?m1/2。 相似文献