首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The theoretical and experimental performance of Hg1-xCd xTe long wavelength infrared (LWIR) photoconductors fabricated on two-layer heterostructures grown by in situ MOCVD has been studied. It is shown that heterojunction blocking contact (HBC) photoconductors, consisting of wider bandgap Hg1-xCdx Te on an LWIR absorbing layer, give improved responsivity, particularly at higher applied bias, when compared with two-layer photoconductors incorporating n+/n contacts. An extension to existing device models is presented, which takes into account the recombination rate at the heterointerface and separates it from that occurring at both the contact-metal/semiconductor and passivant/semiconductor interfaces. The model requires a numerical solution to the continuity equation, and allows the device responsivity to be calculated as a function of applied electric field. Model predictions indicate that a change in bandgap across the heterointerface corresponding to a compositional change of Δx⩾0.04 essentially eliminates the onset of responsivity saturation due to minority carrier sweepout at high applied bias. Experimental results are presented for frontside-illuminated n-type Hg1-xCdxTe photoconductive detectors with either n+/n contacts or heterojunction blocking contacts. The devices are fabricated on a two-layer in situ grown MOCVD Hg1-xCdxTe wafer with a capping layer of x=0.31 and an LWIR absorbing layer of x=0.22. The experimental data clearly demonstrates the difficulty of forming n +/n blocking contacts on LWIR material, and indicates that heterojunctions are the only viable technology for forming effective blocking contacts to narrow bandgap semiconductors  相似文献   

2.
A compositionally graded CdTe-Hg1−xCdxTe interface was created by deposition of CdTe on p-HgCdTe and subsequent annealing. The compositionally graded layer between CdTe and HgCdTe was formed by an interdiffusion process and was used for passivation. The composition gradient (Δx) in the interfacial region and the width of the graded region were tailored by adopting a suitable annealing procedure. The effect of process conditions on the interfacial profile and photoelectric properties such as lifetime and surface recombination velocity was studied in detail. Surface recombination velocity of the p-HgCdTe could be reduced to the level of 3,000 cm/s at 77 K, which represents very good passivation characteristics. The passivation layer formed by this method can be used for the fabrication of high performance and stable modern infrared detectors. Thus, a passivation process is developed, which is simple, effective, reproducible, and compatible with the HgCdTe device fabrication and packaging processes.  相似文献   

3.
Rapid isothermal processing of strained GeSi layers   总被引:1,自引:0,他引:1  
A cold-wall rapid thermal processor was used to study the oxidation and annealing properties of GexSi1-x strained layers. The dry oxidation rate of GexSi1-x was found to be the same as that of Si, while the wet oxidation rate was found to be higher than that of Si, and the oxidation rate increases with the Ge concentration (up to 20% in this study). A high fixed oxide charge density (>5×1011 /cm2) and interface trap level density (>1012 /cm2-eV) at the oxide interface have been determined from capacitance-voltage measurements. Using techniques such as X-ray rocking curve analysis and I-V and C-V measurements of the p-n heterojunction it was found that the degradation of electronic properties of metastable GexSi1-x strained layers during rapid thermal annealing are related to the formation of structural defects at the heterointerfaces  相似文献   

4.
The authors describe the electrical and optical characterization of three Hg1-xCdxTe avalanche photodiodes manufactured using planar technology with composition parameter x near 0.6. This alloy composition leads to devices that are well suited for 1.55-μm detection. From the noise analysis under multiplication, the authors show the tight dependence of the ratio β/α (of the hole; and electron ionization coefficient, respectively) upon x and the ratio Δ/Eg where Δ is the spin-orbit splitting energy and E g is the bandgap energy. It turns out that in these alloys around x=0.6, Δ is very close to the bandgap energy so β/α reaches its maximum value. Owing to this property, which is characteristic of II-VI compounds, Hg1-xCdxTe is a good candidate for 1.3-μm to 1.6-μm avalanche photodiodes  相似文献   

5.
Metal-semiconductor-metal (MSM) detectors with active layers of Hg 1-xCdxTe (x=0.62-0.74) and electrode spacings of 2, 4, and 6 μm have been fabricated and characterized. Direct-current measurements have shown a low dark current and high responsivity from 0.15 to 1.5 A/W at 10-V bias. The lowest values of dark current (0.16 mA cm2) were obtained for detectors which incorporated an overlayer of CdTe. For detectors without the overlayer, increasing the Cd mole fraction resulted in a decrease in the dark current and a reduction in the 300-nm responsivity. Measurements of frequency response for these detectors show a maximum loss of 8 dB to 20 GHz. These results compare favorably with high-performance MSM detectors based on In0.53Ga0.47As with a lattice-matched barrier layer of In0.52Al0.48As  相似文献   

6.
An analytical investigation of optical nutation in direct-gap semiconductors such as GaAs, InSb, and Hg1-xCdxTe based on the time-dependent perturbation technique is discussed. The crystals are considered to be irradiated by short pulsed moderate power near-resonant lasers producing significant density of optically-induced free electron-hole pairs. Incoherent dephasing mechanisms have been introduced phenomenologically into the coherent radiation-semiconductor interaction model. The theory, on application to the case of a specific crystal such as Hg1-xCdxTe with x=0.18 irradiated by a pulsed 10.6 μm CO2 laser, manifests distinctly the occurrence of ringing behavior in the transmitted intensity, transient dispersion, and absorption even in the absence of any theoretical averaging or the consideration of the effective density of states  相似文献   

7.
A simplified integration technique for direct band-to-band tunneling current calculation in semiconductor devices of 1- or 2-D general device structures is described. The integration, along part of the depletion region, is of a tunneling generation function which depends on the local electric field. The simplified integration scheme relies on Kane's parabolic shaped gap barrier which accurately applies to such narrow-bandgap semiconductors as InSb and Hg1-xCdxTe. Tunneling current and zero bias resistance calculations in 1-D Hg1-xCdxTe p-n junctions using the proposed technique are presented. The extension of the technique to 2-D potential structures is demonstrated by modeling peripheral surface tunneling currents. The results compare well with measured reverse breakdown currents of InSb gate-controlled diodes  相似文献   

8.
Bandgap-engineered W/Si1-xGex/Si junctions (p+ and n+) with ultra-low contact resistivity and low leakage have been fabricated and characterized. The junctions are formed via outdiffusion from a selectively deposited Si0.7Ge 0.3 layer which is implanted and annealed using RTA. The Si 1-xGex layer can then be selectively thinned using NH4OH/H2O2/H2O at 75°C with little change in characteristics or left as-deposited. Leakage currents were better than 1.6×10-9 A/cm2 (areal), 7.45×10-12 A/cm (peripheral) for p+/n and 3.5×10-10 A/cm2 (peripheral) for n+/p. W contacts were formed using selective LPCVD on Si1-xGex. A specific contact resistivity of better than 3.2×10-8 Ω cm2 for p +/n and 2.2×10-8 Ω cm2 for n+/p is demonstrated-an order of magnitude n+ better than current TiSi2 technology. W/Si1-xGe x/Si junctions show great potential for ULSI applications  相似文献   

9.
The effectiveness of rapid thermal annealing as a passivation technique using Si3N4 as a solid source of H is discussed. Polysilicon MOSFETs with an on/off ratio of 107 can be obtained through rapid thermal hydrogen passivation, compared to an on/off ratio of 106 after furnace passivation. The improvement of subthreshold slope, threshold voltage, and channel transconductance compared to unpassivated MOSFETs is greater for rapid thermal annealing (RTA) than for furnace passivation  相似文献   

10.
Stability problems in conventional InP metal-insulator-semiconductor field effect transistors (MISFET's) have been overcome in InP heterojunction insulated gate FET's (HIGFET's) by replacing the insulator with InxAl1-xAs. We report on the fabrication and low-frequency operation of the HIGFET with a composition of x = 0.43. Transistor characteristics have been successfully modeled by an analytical MISFET model which indicate a low interfacial state density (≅ 1011/cm2) and near flat-band condition.  相似文献   

11.
在富Te生长条件下,通过垂直布里奇曼法制备的部分碲锌镉晶体内存在导电类型转变界面.采用富Te液相外延技术在含有导电类型转变界面的碲锌镉衬底上生长碲镉汞薄膜,制成的红外焦平面探测器响应图上存在明显的响应不均匀分界面.碲锌镉晶体的导电类型转变由缺陷类型的不同引起,为消除碲锌镉衬底的导电类型转变界面,提升碲镉汞红外焦平面的成...  相似文献   

12.
Si/Si1-xGex heterojunction transistors (HBTs) fabricated by a chemical vapor deposition (CVD) technique are reported. A rapid thermal CVD limited-reaction processing (LRP) technique was used for the in situ growth of all three device layers, including a 20-mm Si1-xGex layer in the base. The highest current gains observed (β=400) were for a Si/Si1-x Gex HBT with a base doping of 7×1018 cm-3 near the junction and a shallow arsenic implant to form ohmic contacts and increase current gain. Ideal base currents were observed for over six decades of current and the collector current remained ideal for nearly nine current decades starting at 1 pA. The bandgap difference between a p-type Si layer doped to 5×1017 cm-3 and the Si1-xGex(x=0.31) base measured 0.27 eV. This value was deduced from the measurements of the temperature dependence of the base current and is in good agreement with published calculations for strained Si1-xGex layers on Si  相似文献   

13.
High performance enhancement mode InP MISFET's have been successfully fabricated by using the sulfide passivation for lower interface states and with photo-CVD grown P3N5 film used as gate insulator. The MISFET's thus fabricated exhibited exhibited pinch-off behavior with essentially no hysteresis. Furthermore the device showed a superior stability of drain current. Specifically under the gate bias of 2 V for 104 seconds the room temperature drain current was shown to reduce from the initial value merely by 2.9% at the drain voltage of 4 V. The effective electron mobility and extrinsic transconductance are found to be about 2300 cm 2/V·s and 2.7 mS/mm, respectively. The capacitance-voltage characteristics of the sulfide passivated InP MIS diodes show little hysteresis and the minimum density of interface trap states as low as 2.6×1014/cm2 eV has been attained  相似文献   

14.
A new post-metallization annealing technique was developed to improve the quality of metal-oxide-semiconductor (MOS) devices using SiO 2 films formed by a parallel-plate remote plasma chemical vapor deposition as gate insulators. The quality of the interface between SiO2 and crystalline Si was investigated by capacitance-voltage (C-V) measurements. An H2O vapor annealing at 270°C for 30 min efficiently decreased the interface trap density to 2.0×1010 cm-2 eV-1, and the effective oxide charge density from 1×10 12 to 5×109 cm-2. This annealing process was also applied to the fabrication of Al-gate polycrystalline silicon thin film transistors (poly-Si TFT's) at 270°C. In p-channel poly-Si TFT's, the carrier mobility increased from 60-400 cm2 V-1 s-1 and the threshold voltage decreased from -5.5 to -1.7 V  相似文献   

15.
The physical properties of HfO2 and Hf-silicate layers grown by the atomic layer chemical vapor deposition are characterized as a function of the Hf concentration and the annealing temperature. The peaks of Fourier transform infrared spectra at 960, 900, and 820 cm-1 originate from Hf-O-Si chemical bonds, revealing that a Hf-silicate interfacial layer began to form at the HfO2/SiO 2 interface after post deposition annealing process at 600 degC for 1 min. Moreover, the intensity of the peak at 750 cm-1 can indicate the degree of crystallization of HfO2. The formed Hf-silicate layer between HfO2 and SiO2 is also confirmed by X-ray photoelectron spectroscopy  相似文献   

16.
Results presented in this letter demonstrate that the effective channel mobility of lateral, inversion-mode 4H-SiC MOSFETs is increased significantly after passivation of SiC/SiO2 interface states near the conduction band edge by high temperature anneals in nitric oxide. Hi-lo capacitance-voltage (C-V) and ac conductance measurements indicate that, at 0.1 eV below the conduction band edge, the interface trap density decreases from approximately 2×1013 to 2×1012 eV-1 cm-2 following anneals in nitric oxide at 1175°C for 2 h. The effective channel mobility for MOSFETs fabricated with either wet or dry oxides increases by an order of magnitude to approximately 30-35 cm2/V-s following the passivation anneals  相似文献   

17.
The authors describe heteroepitaxy of IV-VI lead chalcogenide narrow-gap semiconductor (NGS) as well as II-VI materials (CdTe) on Si substrates. Epitaxy is achieved by using stacked intermediate CaF2 -BaF2 bilayers to overcome the large lattice and thermal expansion mismatch. The authors use lead chalcogenides (PbS, PbTe, Pb1-xEuxSe, and Pb1-xSnx Se) rather than Hg1-xCdxTe (MCT) as IR-sensitive NGS material because growth and fabrication techniques are much easier and compositional homogeneity much less critical with lead salts, while maximum sensitivities are comparable to those of MCT. The high permittivity of lead salts yields much more fault-tolerant devices due to the effective shielding of charges resulting from defects. The authors have fabricated linear sensor arrays on Si substrates with cutoff wavelengths ranging from 3 to above 12 μm. The sensitivities of the best PbTe on Si sensors (cutoff 5.5 μm) are already comparable to those of MCT with the same cutoff wavelengths, while those of the first Pb1-xSnxSe devices are a factor of 2-5 below. Although many fabrication steps are rather crude and far from being optimized, this considerable improvement is easily possible  相似文献   

18.
A self aligned In0.52Al0.48As/In0.53 Ga0.47As double heterojunction bipolar transistor (HBT) with a graded heterointerface has been grown by molecular-beam epitaxy (MBE) and tested. The DC characteristics of HBT structures with a compositionally graded junction using a linear graded In0.53Ga0.47-xAlxAs between two ternary layers were investigated. Typical quaternary graded devices with an emitter dimension of 50×50 μm2 exhibited a current gain as high as 1260, as compared to 800 for abrupt devices, at a collector current density of 2.8×103 A/cm2  相似文献   

19.
Ohmic minority and majority drift mobilities as well as saturation velocities are reported for unstrained and strained Si1-xGe x alloys up to z=0.31. The electron-transport model is verified by measurements of the in-plane majority drift mobility in strained Si1-xGex samples for various dopant and Ge concentrations. Saturation velocities are determined by full-band Monte Carlo simulations. There is no substantial decrease in the mobility perpendicular to the Si/SiGe interface for doping concentrations above 1019 cm-3 and growing x. In contrast, the saturation-drift velocity is strongly reduced with x  相似文献   

20.
AlGaAs/InGaAs/GaAs P-n-p heterojunction bipolar transistors (HBTs) have been fabricated using a dual selective etch process. In this process, a thin AlGaAs surface passivation layer surrounding the emitter is defined by selective etching of the GaAs cap layer. The InGaAs base is then exposed by selective etching of the AlGaAs emitter. The resulting devices were very uniform, with current gain varying by less than ±10% for a given device size. Current gain at a given emitter current density was independent of device size, with gains of over 200 obtained at current densities above 5×104 A/cm 2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号