首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
随着有机废水污染问题的日益严重,电催化降解有机废水越来越受到关注。而电极是电催化氧化技术处理有机废水的"心脏"。简述了不同方法制备的钛基体PbO2电极,总结了该种电极的优缺点和降解有机废水的效果。最后对电催化氧化处理有机废水中钛基体PbO2电极的发展方向做出展望。  相似文献   

2.
郑育英 《广东化工》2011,38(10):69-70,66
水体中存在的微量有机污染物对人类及生物的正常生命活动构成了严重威胁,有效去除这些污染物已成为当务之急。电催化氧化技术因具有适应性广,氧化性强,无二次污染,反应迅速,设备及其操作简单等优点而日益成为有机废水处理领域的研究热点。阳极材料是电化学氧化法处理有机废水的关键。文章综述了贵金属电极、碳素电极、钛基金属氧化物电极和合成掺硼金刚石薄层电极等常用阳极材料的性能,并对有机废水电催化氧化阳极材料的发展趋向进行了展望。  相似文献   

3.
《应用化工》2022,(12):3221-3225
主要论述了三维电催化氧化法的研究进展。分别论述了三维电催化在处理工业有机废水的研究现状,三维电催化氧化的反应机理。报告了三维电催化反应装置研究现状;分析了电极材料,粒子电极的填充方式,反应装置类型对废水处理效果的影响,主要介绍了活性炭(GAC)材料作为粒子电极的应用研究,并探讨了三维电催化技术与其它技术联用提高废水处理效率的研究,最后对三维电催化氧化法的研究方向进行了展望。  相似文献   

4.
电极材料是影响电化学废水处理体系性能的关键因素之一。介绍了电极材料对电化学处理废水反应机制的影响,重点介绍了电极材料对电化学处理废水效率及处理过程产气的影响和电极的改性技术的研究进展。电极材料不仅影响电化学降解过程中的反应类型,而且影响直接电化学氧化和间接电化学氧化在整个电催化氧化作用中的比例、电化学处理废水效率,还影响电极表面的产气种类(如析H_2、O_2、Cl_2及产CO_2、N_2、NH_3等),并因此影响能耗;电极表面涂层的元素掺杂及添加中间层可以提高电极的电催化氧化性能。为电化学处理废水技术合理选择电极提供了技术参考。  相似文献   

5.
宗刚  冯岚婷 《应用化工》2023,(12):3428-3433
针对三维电催化氧化工艺的应用及进展进行了综述。介绍了三维电催化氧化技术的概念,并且以废水中氨氮污染物的处理探究了该技术的降解机理;简要概括了三维电催化氧化技术的影响因素,如电池电压和电流密度、初始pH、温度等;阐述了三维电催化氧化的典型电极材料,主要是通过构建中间层及涂层多元化改性的DSA电极、改性的掺硼金刚石电极、传统粒子电极和近年来研究热门的负载型粒子电极;分别总结了三维电催化氧化技术在氨氮废水、苯酚废水及印染废水处理方面的应用现状,提出了三维电催化氧化技术目前存在的问题并且对该技术今后的发展方向做出了展望。  相似文献   

6.
阐述了有机废水电催化法降解机理;综述了传统二维电极、新型三维电极电催化降解有机废水的原理及其应用现状,PbO2电极在三维电极处理有机废水中的应用现状、反应机理以及改性PbO2电极的研究进展;最后对未来发展方向进行了展望。  相似文献   

7.
简要阐述了常规电催化氧化阳极材料及电催化氧化机理,归纳总结了Magnéli相亚氧化钛电极的性质及不同制备手段的优缺点。对近年来国内外Magnéli相亚氧化钛电极在电催化氧化处理新污染物废水的应用进行了综述,并从电极制备及性质上进行了分析,对Magnéli相亚氧化钛电极的应用前景和发展方向进行了展望。  相似文献   

8.
废水处理用催化电极的研究与应用   总被引:1,自引:0,他引:1  
从废水处理的角度,探讨了废水处理用催化电极研究中存在的问题并对有代表性的电极材料进行了评价。认为电催化法与普通电化学法的主要区别是能够通过电催化产生OH采氧化降解废水中的有机污染物,其技术关键是电极材料的催化活性。讨论了目前正在研究开发的金属电极、碳素电极、金属氧化物电极、非金属氧化物电极、粒子电极等取得的进展,指出尚未解决的问题和发展方向。  相似文献   

9.
有机废水电化学氧化阳极材料的研究进展   总被引:3,自引:1,他引:2  
阳极材料是电化学氧化法处理有机废水的关键.综述了贵金属电极、碳素电极、钛基金属氧化物电极和合成掺硼金刚石(BDD)薄层电极在内的常用阳极材料的性能,并对有机废水电化学氧化阳极材料的发展趋向进行了展望.  相似文献   

10.
电催化氧化是高级氧化法中最具潜力的水处理工艺,不同电极材料处理同种废水效果差异明显。采用RuO_2/IrO_2、PbO_2等金属氧化物电极以及掺硼金刚石电极处理废水中的难降解有机物,考察各材料的总有机碳(TOC)去除率及电流效率。试验结果表明,掺硼金刚石电极降解生化出水中的TOC效果最优,电解1 h,原水TOC从50 mg/L降至25 mg/L。相同电流强度下,电解前15 min,掺硼金刚石电极的表观电流效率是PbO_2的4倍。  相似文献   

11.
工业废水成分复杂、污染物含量高,利用传统的生物降解等处理方法难以进行有效处理。近年来,三维电极电催化氧化技术在废水处理中展现出优越的性能,具有效率高、运行条件可调且温和、耗能低、占地面积小等特点。通过分析三维电极技术处理不同类型工业废水的工艺参数、处理效果和反应历程等,发现三维电极技术可以根据不同类型的废水调整运行参数,也可以适当改变极板材料、粒子电极种类和反应器结构等实现对特定废水进行有效预处理或深度处理。另外,通过对比不同类型废水的反应历程、中间产物等,揭示了三维电极技术降解有机污染物的机理,电化学直接氧化和羟基自由基等间接氧化共同作用矿化有机物污染物,羟基自由基间接氧化通常起主要作用。  相似文献   

12.
The dye industry produces a large amount of hazardous wastewater every day worldwide, which brings potential threaten to the global environment. As an excellent method for removal of water chroma and chemical oxygen demand, electrocatalytic methods are currently widely used in the treatment of dye wastewater. The selection and preparation of electrode materials and electrocatalysts play an important role on the electrocatalytic treatment. The aim of this paper is to introduce the most excellent high-efficiency electrode materials and electrocatalysts in the field of dye wastewater treatment. Many electrode materials such as metal electrode materials, boron-doped diamond anode materials and three-dimensional electrode are introduced in detail. Besides, the mechanism of electrocatalytic oxidation is summarized. The composite treatment of active electrode and electrocatalyst are extensively examined. Finally, the progress of photo-assisted electrocatalytic methods of dye wastewater and the catalysts are described.  相似文献   

13.
电化学氧化处理难降解废水的研究进展   总被引:3,自引:0,他引:3  
综述了国内外电化学氧化处理难降解废水的研究现状,详细阐述了电化学氧化机理,包括阳极氧化技术和阴极还原技术,介绍了影响电化学氧化降解效率的主要因素,包括电极材料、电化学反应器、溶液的pH值、溶剂体系以及其它因素.从有机污染物电化学氧化机理的研究、电极材料的研制、电板结构的研究和高效电解反应器的开发、对特定的电化学氧化系统...  相似文献   

14.
综合近年来国内外有关三维电极电化学废水处理技术研究文献,概述了三维电极在废水处理中的应用研究进展和特点,对三维电极在处理重金属离子废水、有机废水等方面的应用进行了论述,同时也对三维电极与其它技术的结合使用进行了总结,并提出三维电极目前在应用研究方面存在的问题及今后的研究方向。  相似文献   

15.
于栋  罗庆  苏伟  王亮亮  孙宇维  张忠国 《化工进展》2020,39(5):1938-1949
重金属污染物具有毒性和不可降解等特点,对生态环境及生物多样性构成威胁,危害人类健康。处理重金属废水的方法很多,电化学方法是其中一种重要的清洁技术,其用途广泛,可以有效去除和回收废水中的重金属离子。本文聚焦于电沉积法,介绍其在重金属废水处理过程中的反应原理和传质机理,重点阐述影响其处理重金属废水效率的主要因素,包括反应器结构、电极材料、电压、电流密度、pH、废水温度、重金属浓度、杂质离子、电流形式、电沉积时间等。同时概括了电沉积技术在重金属废水处理方面的应用情况,并指出了电沉积法处理重金属废水的重要研究方向,如三维电极及新型电极材料的研发、能耗优化、不同重金属离子的分离等,为重金属废水的治理和电沉积技术的研究与应用提供指导。  相似文献   

16.
三维电极在水处理中的应用   总被引:3,自引:0,他引:3  
综合近年来国内外有关三维电极水处理技术研究现状和特点,对三维电极在处理染料废水、有机废水、重金属离子废水等方面的应用进行了论述,同时对三维电极与其他技术的联合使用进行了总结,并提出三维电极目前研究存在的问题及今后的研究方向。  相似文献   

17.
胡俊生  王卓  杨宏宇 《辽宁化工》2011,40(7):668-670,687
介绍了电化学管式反应器的结构、特点和管式电化学反应系统的组成,综述了电化学管式反应器在工业废水、生活污水等有机废水处理方面的研究与应用,以及在重金属回收处理、燃料电池等领域的研究情况。管式反应器中流体运动规律、电催化反应过程机制、新型高效电极材料的研制和反应器运行模式的研究是今后管式电反应器应用应重点研究解决的问题。  相似文献   

18.
The electrochemical decomplexing and oxidation of two frequently used complexing agents in surface treatment and metal finishing—EDTA (ethylenediaminetetraacetic acid) and NTA (nitrilotriacetic acid)—and of organic non‐complexing additives used in nickel‐plating baths were the subject of this study. Using a Ti–RuO2 electrode, a partial indirect oxidation by in‐situ electrochemical generation of chlorine compounds could be achieved for EDTA and NTA. At a boron‐doped diamond (BDD) electrode however, complete decomplexing and high COD (Chemical Oxygen Demand) and TOC (Total Organic Carbon) (up to 95%) removal occurred at an average current density of 2 A dm?2. It is shown that direct electrochemical oxidation at a BDD electrode resulted in lower energy consumption and higher treatment rates than indirect oxidation at a Ti–RuO2 electrode. Decomplexing at the BDD electrode occurred at high current efficiencies ranging from 71% to 95% with decomplexing rates in the order of 3.13 mmol (Ah)?1 and 5.02 mmol (Ah)?1 for EDTA and NTA respectively. COD removal rates obtained were 0.090 g (Ah)?1 for EDTA, 0.100 g (Ah)?1 for NTA and 0.205 g (Ah)?1 for the nickel‐plating additives. Electrochemical decomplexing and oxidation of common chelating agents can render the subsequent metal precipitation and biological wastewater treatment of surface treatment and metal finishing effluents more efficient. Copyright © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号