首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
Fe-Al/Cr3C2 coatings were sprayed on low steel by high velocity arc spraying(HVAS) technology. The influences of oxides on erosion, corrosion and wear behavior for high velocity arc sprayed Fe-Al/Cr3C2 coatings were studied. The results show that HVAS-sprayed Fe-Al/Cr3C2 coatings have good erosion, heat corrosion and wear resistance. The erosion resistance improves with the increase of the temperature. On one hand, the ferrous oxides are incompact, so they peel off the surface of the coatings easily during the high temperature erosion. On the other hand, compact Al2O3 films on the surface can protect the coatings.  相似文献   

2.
LiNi0.45Co0.10Mn0.45O2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 °C in air. The structures and characteristics of LiNi0.45Co0.10Mn0.45O2, LiCoO2 and LiMn2O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.45Co0.10Mn0.45O2 has a layered structure with hexagonal lattice. The commercial LiCoO2 has sphere-like appearance and smooth surfaces, while the LiMn2O4 and LiNi0.45Co0.10Mn0.45O2 consist of cornered and uneven particles. LiNi0.45Co0.10Mn0.45O2 has a large discharge capacity of 140.9 mA · h/g in practical lithium ion battery, which is 33.4% and 2.8% above that of LiMn2O4 and LiCoO2, respectively. LiCoO2 and LiMn2O4 have higher discharge voltage and better rate-capability than LiNi0.45Co0.10Mn0.45O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3% at the 250th cycle. Batteries with LiMn2O4 or LiNi0.45Co0.10Mn0.45O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes. Foundation item: Project(50302016) supported by the National Natural Science Foundation of China; Project(2005037698) supported by the Postdoctoral Science Foundation of China  相似文献   

3.
Fe/Si3N4 composite powder was synthesized by the heterogeneous precipitation-thermal reduction process, and then pressed into flakes under a pressure of 10 MPa. Flakes were sintered by pressureless and hot-pressing at 1 600 °C under 0.1 MPa N2. The chemical composition, phases and microstructure of composite powder and sintered flakes were investigated by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the structure of composite powders is Si3N4 coated by nano Fe. The crystal phases of sintered flakes by pressureless are Fe(Si) compound, SiC and Si3N4. The crystal phases of the sintered samples by hot-pressing are Fe, Fe(Si) compound and Si3N4. It is found that crystal phases flakes obtained by pressureless and hot-pressing are very different. Foundation item: Project(50804016) supported by the National Natural Science Foundation of China  相似文献   

4.
Sol—Gel Synthesis of Normal Spinel LiMn2O4 and Its Characteristics   总被引:2,自引:0,他引:2  
Normal spinel LiMn2O4 was synthesized by sol-gel method using lithium nitrate,manganese nitrate,citric acid and ethylene glycol as raw materials.LiMn2O4 was characterized by XRD,TG-DTA,IR,SEMand AAS,The optimum conditions for the synthesis were explored.Citric and ethylene glycol were mixed with molar ratio of 0.25,and the mixtrue was esterified at 140℃ for 4 hours.Then lithium nitrate and manganese nitrate were added with molar ratio of 0.6,In the system,the total molar of cations was equal to that of citric acid.At last,reflux the system at 105℃ for 2 hours,Dried gel was fired at 600℃ for 8 hours.Particle diameters of raw product were about 100nm mainly.Further research shows that lithium ion of LiMn2O4 is easy to be extracted,and normal spinel λ-MnO2 can be obtained after lithium ion extraction.  相似文献   

5.
Leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system   总被引:2,自引:0,他引:2  
The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size, reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching efficiency of zinc were examined. The leaching kinetics of low-grade zinc oxide ore in NH3-NH4Cl-H2O system follows the kinetic law of shrinking-core model. The results show that diffusion through the inert particle pores is the leaching kinetics rate controlling step. The calculated apparent activation energy of the process is about 7.057 kJ/mol. The leaching efficiency of zinc is 92.1% under the conditions of ore particle size of 69μm, holding at 80℃ for 60 min, sum ammonia concentration of 7.5 mol/L, the molar ratio of ammonium to ammonia being 2:1, and the ratio (g/mL) of solid to liquid being 1:10.  相似文献   

6.
Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), temperature programmed reduction (TPR), hydrogen temperature programmed desorption (H2-TPD) and O2 titration. Co-support compound formation can be detected in catalyst system by XRD.For the Co/Al2O3 catalysts with low cobalt loading, CoAl2O3 phase appears visibly. Two different reduction regions can be presented for Co/Al2O3 catalysts, which belong to Co3 O4 crystallites (reduction at 320 ““C) and cobalt oxidealumina interaction species (reduction at above 400℃). Increasing Co loading results in the increase of Co3 O4 crystallite size. The reduced Co/Al2O3 catalysts have two adsorption sites, and cobalt loading greatly influences the adsorption behavior. With the increase of cobalt loading, the amount of low temperature adsorption is increased, the amount of high temperature adsorption is decreased, and the percentage reduction and cobalt crystallite size are increased.  相似文献   

7.
Exchange current density of spinel LiMn2O4 was studied by linear polarization. The relationship of the kinetic property with the structure of spinel LiMn2O4 was investigated by studying the effect of the doping and surface coating on the kinetic properties of electrode material. The results show that the exchange current density of spinel LiMn2O4 electrode increases with the increase of the amount for lithium intercalation at first, and then decreases. The maximal exchange current density appeares at the 80%–90% lithium intercalation. The similar phenomenon was observed on the doped spinel LiMn2O4 electrode. Doping can enhance the exchange current density of spinel LiMn2O4 material. However, the degree of the doping effect varies with the doped element varying. Surface coating can also enhance the exchange current density of spinel material, and the increment of value is higher than that of doped ones. Foundation item: Project(50302016) supported by the National Natural Science Foundation of China  相似文献   

8.
The reactive process for Al/SiCP composite was studied. SiC particles were in-situ coated by the exothermal reaction of SiC-Ti powder compact in Al melt bath, and easily incorporated into Al melt. The detailed study was carried out to understand the microstructures of the reacted SiC particles. During the reaction and consequent mixing, the successive processes include in-situ coating on the reacted SiC particles, coat dissolution and SiCP splitting. The tensile mechanical properties of 6013Al/SiCP composite processed by the present technology showed that the reacted SiCP considerably reinforced the 6013 matrix. Foundation item: The Key Program of the 9th Five-year Plan of China(No. 95-YS-005) Biography of the first author: CHEN Kang-hua, professor, born on Aug. 30, 1962, received Ph. D degree in 1991, majoring in Al alloy, Al matrix composite and powder metallurgy.  相似文献   

9.
λ-MnO2 was prepared by column method from normal spinel LiMn2O4 with purity of 99.38%. The influence of LiMn2O4 grain size and acidity of leaching solution on the lithium leaching process was studied. The results show that the appropriate range of LiMn2O4 grain size was 60–160 meshes and the concentration of leaching solution HCl was 0.1 mol·L−1. The adsorption capacity Q of λ-MnO2 for lithium increased with the increase of pH and changed markedly at pH 6.0–10.0. It was 3.80mmol/g at pH 12.0 The distribution coefficients Kd of Li+ and Na+ were 3.406×104 and 2.300 respectively, and the separation coefficient a Na Li was 1.481 ×104 at pH 6.5. As a result, λ-MnO2 is a high performance ion-sieve material for lithium ion. LEI Jia-heng: Born in 1957. Funded by the National Natural Science Foundation of China (No. 59972027) and the Natural Science Foundation of Hubei Province (No. 2002AB074)).  相似文献   

10.
The high-temperature oxidation resistance behavior of 7% (mass fraction) Y2O3-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation condition of 1 050 °C and 1 h. The columnar grains in the TBCs disappear after the HIPIB irradiation at ion current densities of 100–200 A/cm2 and the irradiated surface becomes smooth and densified after remelting and ablation due to the HIPIB irradiation. The thermally grown oxide (TGO) layer thickness of the irradiated TBCs is smaller than that of the original TBCs. After 15 cycles, the mass gains of the original TBCs and those irradiated by ion current densities of 100 and 200 A/cm2 due to the oxidation are found to be 0.8–0.9, 0.6–0.7, and 0.3–0.4 mg/cm2, respectively. The inward diffusion of oxygen through the irradiated TBCs is significantly impeded by the densified top layer formed due to irradiation, which is the main reason for the improved overall oxidation resistance of the irradiated TBCs. Foundation item: Projects supported by The 2nd Stage of Brain Korea and Korea Research Foundation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号