首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Decaying alder leaves in water from Alpine Aedes breeding sites, particularly their toxicity to larval Culicidae, were investigated and characterized with comparative toxicological and chemical methods. Bioassays that used third-instar Aedes aegypti as a reference species indicated that the larvicidal effect of crude leaf litter varied with decaying age of the litter, while no toxicity was detected from leaching water of the mosquito breeding sites. Ten-month-old leaf litter was the most toxic. Comparison of the different soluble and insoluble fractions obtained after sequential extraction of decomposed litter allowed us to localize the toxicity factor to an insoluble cell-wall fraction. The toxicity seems to be linked to phenolic activity. It is higher than that found for tannic acid solutions used as a reference to mimic the larvicidal effects of the molecules naturally occurring in decaying litter. The pattern of establishing the larvicidal effect of alder leaf litter in water of Alpine Aedes breeding sites is discussed.  相似文献   

2.
Hot water-extraction was performed on decomposed leaf litter in order to solubilize the toxic fraction involved in the dietary interaction against mosquito larvae in subalpine breeding sites. The toxic fraction was partially extracted by water with an optimum temperature of 60°C and recovered in an insoluble form. Phytochemical characterization was achieved through differential enzymatic hydrolyses, using the laccase mediator delignifying system, and aluminum chloride chelation monitored by standard bioassays; comparative spectrophotometric analyses in ultraviolet light after solubilization in acetyl bromide; and comparative reversed-phase high-performance liquid chromatography of the phenolic aldehydes after alkaline nitrobenzene oxidation. The results suggested the involvement of ligninlike compounds in the toxicity of the isolated fraction. Toxicity of this fraction appeared far stronger than that of the crude leaf litter. The involvement of this ligninlike fraction in the dietary toxicity of leaf litter against larval mosquito was then investigated.  相似文献   

3.
Hydroxamic acids (Hx) are wheat secondary metabolites conferring resistance for cereals against aphids. The activity of five enzymatic systems were evaluated in the aphid Sitobion avenae reared on the high-Hx wheat cultivar Chagual and the low-Hx wheat cultivar Huayún for 10 generations. Enzyme solutions were prepared from aphid homogenates and assayed for mixed function oxidases (including cytochrome P-450 monooxygenases and NADPH cytochrome c reductase), glutathione S-transferases, esterases, and catalase. Specific activities per aphid individual of cytochrome P-450 monooxygenases, NADPH cytochrome c reductase, glutathione S-transferases, and esterases were significantly increased in wheat cultivars relative to oat (only marginal increase of esterases in Chagual). Aphids fed on cv. Huayún showed an overall higher induction of enzymatic systems than those fed on cv. Chagual. Comparison of these results with reported effects of Hx on detoxifying enzymes in other insects, including aphids, support the hypothesis that these enzymatic pathways play an important role in the detoxification of toxic host-plant secondary metabolites.  相似文献   

4.
Dietary leaf litter chemistry is known to play an important ecotoxicological role in the plant–mosquito interaction in subalpine flooded areas surrounded by vegetation because of differential larvicidal effects of insoluble polyphenols formed during the leaf decaying process. This dietary interaction was investigated through comparative evaluation of the role of toxic/nontoxic leaf litter in both larval foraging and feeding behavior, by using different samples of decomposed alder leaf litter and larval Aedes aegypti as experimental references. Track analysis showed significant differences in larval foraging behavior in the absence or presence of leaf litter. Comparative alimentary preference investigations and further track analysis suggested that larvae are unable to detect leaf litter toxicity. These characteristics of the larval behavioral feeding pattern suggested that: (1) decomposed leaf litter may be involved as an important attractive food source in the habitat selection and evolutionary history of culicids, and (2) preingestive behavioral mechanisms appear to be minimally involved in the differential larval dietary adaptation to toxic leaf litter. These results may have interesting consequences for culicid biological control.  相似文献   

5.
A variety of oxidases, reductases, esterases, epoxide hydrolases, and group transferases in herbivorous insects and mites detoxify and facilitate the excretion of toxic phytochemicals (allelochemicals). Current theory indicates that the cytochrome P-450-dependent mixed-function oxidases (MFOs) are by far the most important enzymes because they have many attributes that are essential for an effective detoxification system. Data presented here on the midgut microsomal MFO activity of larvae of the gypsy moth,Lymantria dispar, are discussed in the light of previous work and support the theory. In the gypsy moth, the MFO levels exhibit a parallel trend with changes in specific feeding rates, and changes in the specific activity of the enzyme appear to be regulated ontogenetically and by inductive effect of chemicals in the diet. The specific activity of the MFOs rises more sharply on leaves of a highly preferred type-1 plant, the pin oak, than on an artificial wheat germ diet; the increase from mid-second instar to mid-fifth is 4.5- and 1.8-fold, respectively. The relationship of food consumption rate to increase in body mass (W) was slightly in excess of a 11 ratio for both pin oak and the artificial diet, indicating that the feeding rate surpasses the increase in W (a rare phenomenon in insects). Moreover, the surface-to-volume ratios are fairly constant for combined data of gut lumen and epithelium in second to fifth instars, because the volume occupied by the epithelial cells is much larger than in older ones. Thus, it is concluded that greater specific activity of the MFO is necessary with larval advancement to higher instars in order that they may process dietary allelochemicals with an efficiency comparable to younger larvae. Additional data suggest that MFO level increases reflect further adaptation to: (1) normal, seasonal changes in plants' allelochemical composition and concentration; (2) increase in allelochemical concentration in response to leaf damage; and (3) the risk faced by dispersing larvae of encountering a greater amount and variety of allelochemicals on suboptimal/ less suitable plants. Evidence also has emerged recently for MFO-catalyzed metabolism/deactivation of numerous plant allelochemicals, including compounds that induce the enzyme. MFOs are further adapted for participation in the biogenesis of substances physiologically important to insects. Moreover, the catalytic center of the MFO system, cytochrome P-450, occurs in multiple forms; the significance of this important feature is discussed.Paper presented at the Symposium Bioorganic Chemistry of Communication Systems, at the NERM-15 ACS meeting, SUNY College at New Paltz, New York, June 1985.  相似文献   

6.
Inflorescence scent samples from nine populations of dioecious Silene otites, a plant pollinated by moths and mosquitoes, were collected by dynamic headspace extraction. Sixty-three scent samples were analyzed by gas chromatography–mass spectrometry. Out of 38 found, 35 compounds were identified, most of which were monoterpenoids, fatty acid derivatives, and benzenoids. Phenyl acetaldehyde was the most dominant compound in the majority of samples. The variability in scent composition was high, and population and sex differences were found. Nevertheless, wind tunnel experiments proved similar attraction of Culex pipiens pipiens biotype molestus mosquitoes to the inflorescence odor of S. otites of different populations, indicating that different blends are similarly attractive to mosquitoes. The electrophysiological responses of mosquitoes to the 12 most common and abundant odor compounds of S. otites differed. Linalool oxide (furanoid) and linalool evoked the strongest responses in male and female mosquitoes, and (Z)-3-hexenyl acetate was strongly active in females. Medium responses were evoked in males by (Z)-3-hexenyl acetate, in females by benzaldehyde and methyl salicylate, and in both sexes by lilac aldehyde, lilac alcohol, and linalool oxide (pyranoid).  相似文献   

7.
Papilio glaucus caterpillars encounter a diverse array of sesquiterpene lactones, including parthenolide, in the leaves of host plants Liriodendron tulipifera and Magnolia virginiana. These compounds are toxic to unadapted herbivores, and the development of P. glaucus caterpillars likely depends on their ability to excrete or detoxify them efficiently. A new metabolite of parthenolide, 2-α-hydroxydihydroparthenolide, identified by crystal structure determination and nuclear magnetic resonance, was present in the waste of the caterpillars. The parent compound was modified by the reduction of an α-methylene group, rendering the compound less reactive, and the addition of a hydroxyl group, which increases the polarity and prepares it for the conjugation reactions of phase II metabolism. Unmetabolized parthenolide was also present in large amounts in waste. P. glaucus larvae are apparently capable of excreting intact sesquiterpene lactones and sesquiterpene lactone metabolites during consumption of foliage rich in these compounds.  相似文献   

8.
The electron transfer (ET) process of progressively unfolded bovine cytochrome c immobilized on different self-assembled monolayers (SAMs) was investigated. Insight is gained on the role of the SAM surface on the functionality of the partially unfolded and non-native forms of the adsorbed protein. Direct electrochemical measurements were performed on cytochrome c adsorbed on mercaptopyridine (MP) and mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol (MUA/MU) at varying temperature, in the presence of urea as unfolding agent. Under strongly unfolding conditions, a non-native form of cytochrome c, in which the methionine ligand is replaced by a histidine, was observed on both MP and MUA/MU SAMs. The E°′ of the native form, in which the haem is axially coordinated by methionine and histidine, slightly shifts to negative values upon increasing urea concentration. However, the non-native bis-histidinate species shows a much lower E°′ value (by approximately 0.4 V) which is by far enthalpic in origin and largely determined by axial ligand swapping. Analysis of the reduction enthalpies and entropies and of the ET rate constants indicate that the nature of the SAM (hydrophilic or anionic) results in changes in the conformational rearrangement of the cytochrome c under unfolding conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号