首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Four experiments examined the effect of dizocilpine maleate (MK-801), a noncompetitive N-methyl-Daspartate (NMDA) receptor antagonist, on reversal learning during development. On postnatal days (PND) 21, 26, or 30, rats were trained on spatial discrimination and reversal in a T-maze. When MK-801 was administered (intraperitoneally) before both acquisition and reversal, 0.18 mg/kg generally impaired performance, whereas doses of 0.06 mg/kg and 0.10 mg/kg, but not 0.03 mg/kg, selectively impaired reversal learning (Experiments 1 and 3). The selective effect on reversal was not a result of sensitization to the second dose of MK-801 (Experiment 2) and was observed when the drug was administered only during reversal in an experiment addressing state-dependent learning (Experiment 4). Spatial reversal learning is more sensitive to NMDA-receptor antagonism than is acquisition. No age differences in sensitivity to MK-801 were found between PND 21 and 30. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
The N-methyl-{d}-aspartate (NMDA) subtype of the excitatory amino acid receptor has been implicated in several kinds of learning and memory, as well as in long-term potentiation (LTP), a putative cellular mechanism for learning and memory. This experiment examined the role of the NMDA receptor in patterned single-alternation (PSA) learning in preweanling rats following intraperitoneal injections of 0.05 mg/kg MK-801, a selective NMDA antagonist. MK-801 significantly inhibited PSA at both 60-sec and 30-sec intervals (ITIs). and attenuated, but did not block Iearning at 8-sec . These results are compared with effects on PSA, a form of nonspatial, memory-based learning, observed; after early postnatal exposure to alcohol, infant hippocampal lesions, and infant exposure to X-irradiation, and they add strongly to these earlier demonstrartions of the role of the hippocampus in learning and memory that is clearly nonspatial and non-cognitive-map-related. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
Two experiments examined the effect of the noncompetitive NMDA receptor antagonist, dizocilpine maleate (MK-801), on spatial working memory during development. Rats were trained on spatial delayed alternation (SDA) in a T-maze after ip administration of 0.06 mg/kg MK-801, 0.1 mg/kg MK-801, or saline on postnatal days (P) P23 and P33 (Experiment 1), or following bilateral intrahippocampal administration of 2.5 or 5.0 υg per side MK-801 or saline on P26 (Experiment 2). In Experiment 1, MK-801 dose-dependently impaired SDA learning at both ages. Because the same doses of systemic MK-801 have no effect on T-maze position discrimination learning, impairment of SDA by MK-801 likely reflects disruption of spatial working memory. Both doses of MK-801 abolished acquisition of SDA performance in Experiment 2. Disruption of hippocampal plasticity may account for the effects produced by systemic MK-801 administration. These results confirm and extend earlier lesion studies by implicating plasticity of hippocampal neurons in the ontogeny of spatial delayed alternation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
Rats given an antagonist against N-methyl-D-aspartate, (+)-10, 11-dihydro-5-methyl-5H-debenzo (a, d) cycloheptene-5, 10-imine (MK-801), were compared with control rats for their activity and exploratory behavior (habituation, exploration time to the spatial change of one of 4 objects and to the new object) in a circular open field. Rats given 0.07 mg/kg dose of MK-801 displayed no significant differences with the controls. Rats given 0.1 mg/kg dose of MK-801 failed to respond to the spatial change, whereas they displayed habituation and exploration to the new object at the same degree as the control rats. Rats given 0.3 mg/kg dose of MK-801 displayed hyperactivity and did not display habituation and exploration. The result suggests that the 0.1 mg/kg dose of MK-801, which dose not affect on activity, habituation and exploration to the new object in rats, selectively affects on acquisition of spatial information and reduces their spatial exploration.  相似文献   

5.
Antagonists of NMDA glutamate receptors have been shown to alleviate neuropathic pain in rats and humans. However, NMDA antagonists can cause significant side effects ranging from behavioral disturbances to injury of neurons in the posterior cingulate/retrosplenial (PC/RS) cortex. We have found that alpha-2 adrenergic agonists prevent the PC/RS neurotoxic side effects of NMDA antagonists. In the present study of adult female rats subjected to sciatic nerve ligation (Bennett neuropathic pain model) and tested for paw withdrawal latency (PWL) following a thermal stimulus, we evaluated the ability of the NMDA antagonist, MK-801, to alleviate neuropathic pain either by itself or when administered together with the alpha-2 adrenergic agonist, clonidine. We found that MK-801, at a dose (0.05 mg/kg s.c.) that is known to cause mild hyperactivity but is subthreshold for producing PC/RS neurotoxic changes, relieved the neuropathic pain state associated with sciatic nerve ligation. However, the relief at this dose was very transient, and no neuropathic pain-relieving effect was observed at a lower dose (0. 025 mg/kg s.c.) of MK-801. Clonidine, at a dose (0.05 mg/kg s.c.) that prevents the cerebrocortical neurotoxic effects of MK-801, decreased sensitivity to the thermal stimulus equally under all conditions (ligated, sham ligated, unoperated), but did not specifically relieve neuropathic pain in the ligated limb. Combining this dose of clonidine with an ineffective dose (0.025 mg/kg s.c.) of MK-801 provided specific, complete and long lasting (up to 4 h) relief from neuropathic pain. Rats receiving this drug combination did not display hyperactivity or any other behavioral disturbance typically associated with MK-801 treatment, nor show neurotoxic changes in cerebrocortical neurons. In separate experiments on normal unoperated rats, we found that clonidine (0.05 mg/kg s.c.) counteracted the hyperactivity induced by MK-801 (0.05 mg/kg s.c.) and returned activity levels to a normal range. These findings signify that clonidine, which does not specifically relieve neuropathic pain, can potentiate the neuropathic pain-relieving action of MK-801, while also protecting against neurotoxicity and hyperactivity side effects of MK-801. The potentiation is of a sufficient magnitude that it permits cutting the MK-801 dose requirement in half, thereby achieving prolonged neuropathic pain relief while doubling the margin of safety against any type of side effect that might be mediated by blockade of NMDA receptors.  相似文献   

6.
Rats given N-methyl-D-aspartate (NMDA) antagonists were tested in the radial maze in spatial working memory (WM) and reference memory (RM) tasks. 16 female rats given (+)-10,11-dihydro-5-methyl-5H-dibenzo [a,d] cycloheptene-5,10 imine (MK-801; 0.0625 mg/kg intraperitoneal/ly (ip)) before daily testing in an 8-arm WM task were impaired even after 70 days. Control rats learned quickly, were assigned to a group given MK-801 or saline, and were trained to avoid 4 of the 8 arms. MK-801 impaired this reversal learning but did not affect WM performance. 15 male rats were trained on an 8-arm WM task for 19 days and then given intracranial aminophosphonovaleric acid (APV; 33 mM), which impaired both WM and motor behavior. 24 male rats were trained for 65 days to enter 4 of 8 arms and then given intracranial APV (20 or 30 mM). WM and RM were normal in the familiar environment but were both impaired in an unfamiliar environment. Results suggest that the mnemonic effects of NMDA antagonists depend on environmental familiarity, dose, and training duration. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Effects of MK-801, an N-methyl-D-aspartate antagonist, on short-interval timing were examined using the peak-interval (PI) and PI-gap procedures. Fisher 344 rats were given daily injections of 0.025 mg/kg, 0.05 mg/kg, and 0.2 mg/kg MK-801. The main results were (a) 0.2 mg/kg MK-801 produced an immediate overestimation of the criterion time; (b) MK-801 increased peak rate of responding; (c) 0.2 mg/kg MK-801 produced an increase in variability; (d) during the PI-gap procedure, a reset pattern was observed for all rats (MK-801 and saline). Results suggest that MK-801 has at least 2 effects. First, MK-801 interferes with short-interval timing by producing an overestimation of time and a nonscalar increase in variability. Second, MK-801 increases response rate, suggesting a decrease in response inhibition. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
The relationship between spatial learning impairment and reversible neuronal injury in the posterior cingulate/retrosplenial (PC/RS) cortex induced by MK-801 in male mice was studied using a four-corner holeboard task. Mice were dosed with 1 mg/kg MK-801 and tested on acquisition of a new "baited" hole at 5 or 12 h posttreatment. Acquisition in drugged mice was impaired at 5 h, but not at 12 h posttreatment. Their retention performances were unaffected 24 h after either the 5 or 12 h posttreatment acquisition sessions. MK-801 (1 mg/kg) was found to induce locomotor hyperactivity and some sensorimotor impairment at 5 h posttreatment. which could have contributed to the acquisition deficit. However, nonassociative effects of the drug were not prominent because this same dose did not impair holeboard performance at 5 h posttreatment when the task was well learned. Histologic experiments showed that many injured neurons (containing cytoplasmic vacuoles) were present in the PC/RS cortex at 5 h posttreatment but the reaction was essentially reversed at 12 h posttreatment. The results suggest that the acquisition impairment and neuronal injury induced by MK-801 evolve and recover in parallel according to a similar time schedule.  相似文献   

9.
1. The influence of voltage dependent calcium channel blocker (VDCC), nimodipine and N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801 on the brain free arachidonic acid (FAA) level and on the learning ability in hypoxia-exposed rats was examined. 2. Some animals were decapitated after cerebral hypoxia had been obtained and the brain FAA level was determined by gas chromatography. The other animals were trained in a passive avoidance procedure and were exposed to hypoxic conditions immediately after the learning trial response had been acquired. A passive avoidance retention test was performed 24 hours later. 3. Various doses of nimodipine (0.03; 0.1; 0.3 and 1.0 mg/kg) and MK-801 (0.03; 0.1 and 0.3 mg/kg) had been injected 30 minutes before biochemical or behavioral procedures started. 4. It was found that hypoxia strongly increased the brain FAA level and impaired the retention of the passive avoidance response. 5. Pretreatment with 0.3 mg/kg and 1.0 mg/kg of nimodipine prevented the brain FAA accumulation. It has also been shown that all tested doses of nimodipine significantly improved the retention deficit in the animals exposed to hypoxia. 6. Neither the one of tested doses of MK-801 influenced significantly the increase of the brain FAA level and/or passive avoidance behavior in hypoxic animals. 7. These results confirm the hypothesis that the brain FAA accumulation and cognitive impairment, caused by hypoxia, are maybe associated with disturbances in calcium homeostasis and that nimodipine may be useful in ameliorating the hypoxia-induced brain tissue damage. Blocade of NMDA receptor-channel complex by MK-801 was not sufficient to prevent hypoxia-induced neuronal damage.  相似文献   

10.
Intermittent morphine pretreatment (10 mg/kg/day for 14 days) induced long-lasting (one month post-treatment) sensitization to the locomotor effects of morphine and amphetamine in rats. Co-administration of the non-competitive NMDA-receptor antagonist dizocilpine (MK-801) (0.1 mg/kg) with morphine did not prevent the development of long-term behavioural sensitization. However, this dose of MK-801 did cause long-term sensitization to its own locomotor effects. Co-administration of 0.25 mg/kg MK-801 with morphine caused death in 60% of the animals. In the animals that survived MK-801 plus morphine pretreatment, neither short-term (3 days) nor long-term morphine-induced sensitization was observed. MK-801 alone (0.25 mg/kg/day for 14 days) induced short-term cross-sensitization to morphine. Thus, the development of long-term morphine-induced locomotor sensitization could only be prevented by a dose of MK-801 that yields a lethal combination with morphine. In addition, MK-801 induced sensitization to its own locomotor effects and cross-sensitization to morphine. These findings seriously question whether MK-801 can be used to study the development of morphine-induced behavioural sensitization.  相似文献   

11.
Rats avoid unfamiliar foods and learn to prefer those that they smell on the breath of conspecifics. Hippocampal lesions produce rapid forgetting of this socially acquired memory. The authors report that NMDA receptor antagonists impair this memory. Rats given CPP were trained in the social transmission of food preference task. Normal rats showed robust memory 72 hr later. CPP-injected rats performed normally 24 hr, but randomly 72 hr, after training. Spatial context was irrelevant: Rats trained and tested in different rooms performed the same as rats trained and tested in 1 room. MK801 and intrahippocampal injections of APV produced amnestic effects similar to CPP. Thus, NMDA receptor activation is crucial for the persistence of socially acquired, hippocampus-dependent, nonspatial memory. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
The effects of pretreatment with the non-competitive NMDA antagonist (+)MK-801 on the behavioral alterations induced by repeated restraint stress were investigated. Repeatedly stressed (restraint stress 2 h a day x 10 days) mice showed enhanced sensitivity to the inhibitory effects of a low dose of direct dopamine agonist, apomorphine (0.25 mg/kg), on climbing behavior. On the other hand, no changes were observed for the stimulatory effect of the high dose of apomorphine (3 mg/kg) on this behavioral response. Mice pretreated with MK-801 (0.15 mg/kg) before the stressful experience did not show altered response to the low dose of apomorphine (0.25 mg/kg). Finally, ten daily injections with 0.15 mg/kg MK-801 did not affect the behavioral response to the low dose of apomorphine, but enhanced the stimulatory effect of the high dose of the dopaminergic agonist on climbing behavior. Therefore, it is possible that the protective action of MK-801 against stress-induced behavioral alteration is due to changes in sensitivity of postsynaptic receptors.  相似文献   

13.
This study was designed to investigate the influence of the calcium (Ca2+) channel inhibitors nicardipine, nifedipine, and flunarizine on the protective action of MK-801, LY 235959 [N-methyl-D-aspartate (NMDA) receptor antagonists], and GYKI 52466 (a non-NMDA receptor antagonist) against electroconvulsions in mice. Unlike nicardipine (15 mg/kg) or flunarizine (10 mg/kg) nifedipine (7.5 and 15 mg/kg) potentiated the protective potency of MK-801 (0.05 mg/kg), as reflected by significant elevation of the convulsive threshold (a CS50 value of the current strength in mA producing tonic hind limb extension in 50% of the animals). The protective activity of LY 235959 and GYKI 52466 was reflected by their ED50 values in mg/kg, at which the drugs were expected to protect 50% of mice against maximal electroshock-induced tonic extension of the hind limbs. Nicardipine (3.75 15 mg/kg), nifedipine (0.94-15 mg/kg), and flunarizine (2.5-10 mg/kg) in a dose-dependent manner markedly potentiated the antiseizure efficacy of LY 235959. Flunarizine (5 and 10 mg/kg) was the only Ca2+ channel inhibitor to enhance the protective action of GYKI 52466 against electroconvulsions. Except with MK-801 + flunarizine (motor performance) or GYKI 52466 + flunarizine (long-term memory), combination of NMDA or non-NMDA receptor antagonists with Ca2+ channel inhibitors produced an impairment of motor performance (evaluated in the chimney test) and long-term memory acquisition (measured in the passive avoidance task) as compared with vehicle treatment.  相似文献   

14.
Six experiments studied the role of conditioned stimulus (CS) familiarity in determining the effects of the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 on fear extinction. Systemic administration of MK-801 (0.1 mg/kg) impaired initial extinction but not reextinction learning. MK-801 impaired reextinction learning when the CS was relatively novel during reextinction training but not initial extinction learning when the CS was relatively familiar during initial extinction training. A context change failed to reinstate the sensitivity of initial fear extinction learning about a relatively familiar CS to MK-801. These experiments show that CS familiarity is an important determinant of effects of MK-801 on fear extinction learning: MK-801 impaired extinction learning about novel stimuli but spared extinction learning about familiar stimuli. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate, (MK-801) a potent noncompetitive antagonist of central NMDA receptors, has been hypothesized to have rewarding properties indicative of abuse potential. To test this hypothesis, the effects of MK-801 on the acquisition of a conditioned place preference and on locomotor activity were assessed and compared with d-amphetamine. Both MK-801 (0.03 and 0.1 mg/kg, SC) and d-amphetamine (1.0 mg/kg, SC) administration resulted in the acquisition of a conditioned place preference. However, while both amphetamine and the higher dose of MK-801 produced a behavioral activation during the training period the lower dose of MK-801 did not. These results suggest that MK-801, at doses that produce behavioral activation and below, is rewarding and therefore may have abuse potential.  相似文献   

16.
PURPOSE: Treatment of the retina by laser photocoagulation often is complicated by an immediate side effect of visual impairment, caused by unavoidable, laser-induced destruction of healthy tissue adjacent to the lesion. A neuroprotective therapy that salvages this healthy tissue might enhance the benefit obtained from the treatment. This study was proposed to determine whether glutamate-receptor blockers can provide adjuvant neuroprotection during laser photocoagulation. The effect of MK-801, an NMDA-receptor antagonist, on laser-induced retinal injury was examined, in a rat model. METHODS: Argon laser lesions were created in the retinas of 36 DA rats, and were followed immediately by intraperitoneal injections of MK-801 (2 mg/kg) or saline. The animals were killed after 3, 20, or 60 days and the retinal lesions were evaluated histologically and morphometrically. RESULTS: Photoreceptor-cell loss was significantly less in MK-801-treated rats than in control animals. The proliferative membrane composed of retinal pigment epithelial cells and neovascular blood vessels, which was seen at the base of the lesion in control group retinas, was smaller in the MK-801-treated retinas. In rats treated with a higher dose of MK-801, the lesions showed almost no proliferative reaction. CONCLUSIONS: A potent noncompetitive NMDA-receptor blocker, MK-801 exhibits neuroprotective and antiproliferative properties in the retina. Glutamate-receptor blockers should be investigated further as potential adjuvant therapy in retinal photocoagulation treatments.  相似文献   

17.
Spatial learning but not memory performance in the radial maze is disrupted by low doses of MK801 (0.0625 mg/kg ip), a noncompetitive N-methyl-{d}-aspartate receptor channel blocker (M. L. Shapiro and C. O'Connor, 1992). The effect of this low dose of MK801 on hippocampal physiology and synaptic plasticity was assessed in 16 behaving female Sprague-Dawley rats. The drug increased the frequency (0.5 Hz), marginally reduced the amplitude of hippocampal rhythmical slow wave activity (RSA), did not alter non-RSA slow wave activity, and reduced normal synaptic transmission from the entorhinal cortex to the dentate gyrus by ~8%. Independent of these effects on normal physiology, MK801 also reduced primed burst potentiation, a form of synaptic plasticity produced by physiologically patterned stimulation, by ~20% in the same pathway. Thus, low doses of MK801 may impair spatial learning by reducing, directly or indirectly, the likelihood of synaptic plasticity in the hippocampus. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
The effects of dizocilpine maleate (MK-801) on vicarious trial-and-error (VTE), and on simultaneous olfactory discrimination learning and its reversal, were observed in weanling rats. The term VTE was used by Tolman (The determiners of behavior at a choice point. Psychol. Rev. 1938;46:318-336), who described it as conflict-like behavior at a choice-point in simultaneous discrimination learning. It takes the form of head movements from one stimulus to the other, and has recently been proposed by Amsel (Hippocampal function in the rat: cognitive mapping or vicarious trial-and-error? Hippocampus, 1993;3:251-256) as related to hippocampal, nonspatial function during this learning. Weanling male rats received systemic MK-801 either 30 min before the onset of olfactory discrimination training and its reversal, or only before its reversal. The MK-801-treated animals needed significantly more sessions to acquire the discrimination and showed significantly fewer VTEs in the acquisition phase of learning. Impaired reversal learning was shown only when MK-801 was administered during the reversal-learning phase, itself, and not when it was administered throughout both phases.  相似文献   

19.
Extracellular recordings of convergent neurons of the oralis subnucleus of the trigeminal sensory complex were performed in paralysed rats under halothane-N2O-O2 anesthesia using glass micropipettes. The effects of MK801, a noncompetitive NMDA receptor antagonist, were observed on the increased cell activity (wind-up), triggered by the repetition, at a low frequency (0.66 Hz) and high intensity (3 times the threshold of C-fiber response), of electrical stimulation of the receptive field. Successive cumulative doses (up to 1 mg/kg) of MK801 i.v. resulted in a dose-dependent decrease in the responses related to C-fiber input (11 cells). A single dose of 1 mg/kg applied in four cells had effects similar to the 1 mg/kg dose given cumulatively. Three units were either weakly or not modified by MK801. In a second experiment, recordings were performed in 12 cells for 80 min after an injection of a small dose of MK801 (0.15 mg/kg). C input was not significantly modified by the antagonist. The effects of MK801 on the first part of the wind-up response (wind-up proper) peaked between 15 and 50 min and returned to control values at about 80 min. The effects on the postdischarge followed approximately the same time course. It is concluded that despite being devoid of substantia gelatinosa, the oralis subnucleus contains neurons that display an NMDA receptor-linked wind-up similar to the phenomenon described in the dorsal horn of the spinal cord.  相似文献   

20.
Effect of clozapine on MK-801-induced hyperlocomotion and stereotypy as well as open field behavior was studied. Clozapine (0.1-7.5 mg/kg) dose-dependently blocked MK-801(0.5 mg/kg)-induced stereotypy. Both total and ambulatory responses were blocked by even the lower doses (0.1-0.5 mg/kg) of clozapine. In open field test, clozapine selectively blocked hyperambulation induced by MK-801 (0.1 mg/kg) whereas it potentiated MK-801 (0.1 mg/kg)-induced stereotypy at all the doses used. Haloperidol (0.25 and 0.5 mg/kg) and SCH 23390 (0.5 and 1 mg/kg) showed a dose-dependent effect on MK-801-induced behaviors while sulpiride (25 and 50 mg/kg) failed to modify MK-801-induced open field behavior. This study supports the preferential effect of clozapine on dopamine receptors located in mesolimbic area and further suggests the possibility of using open field behavior induced by MK-801 as a model for studying atypical antipsychotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号