首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The purpose of this paper is to propose a compound cosine function neural network with continuous learning algorithm for the velocity and orientation angle tracking control of a nonholonomic mobile robot with nonlinear disturbances. Herein, two neural network (NN) controllers embedded in the closed-loop control system have the simple continuous learning and rapid convergence capability without the dynamics information of the mobile robot to realize the adaptive control of the mobile robot. The neuron function of the hidden layer in the three-layer feed-forward network structure is on the basis of combining a cosine function with a unipolar sigmoid function. The developed neural network controllers have simple algorithm and fast learning convergence because the weight values are only adjusted between the nodes in hidden layer and the output nodes, while the weight values between the input layer and the hidden layer are one, i.e. constant, without the weight adjustment. Therefore, the main advantages of this control system are the real-time control capability and the robustness by use of the proposed neural network controllers for a nonholonomic mobile robot with nonlinear disturbances. Through simulation experiments applied to the nonholonomic mobile robot with the nonlinear disturbances which are considered as dynamics uncertainty and external disturbances, the simulation results show that the proposed NN control system of nonholonomic mobile robots has real-time control capability, better robustness and higher control precision. The compound cosine function neural network provides us with a new way to solve tracking control problems for mobile robots.  相似文献   

2.
The purpose of this paper is to propose a hybrid trigonometric compound function neural network (NN) to improve the NN-based tracking control performance of a nonholonomic mobile robot with nonlinear disturbances. In the mobile robot control system, two NN controllers embedded in the closed-loop control system have the simple continuous learning and rapid convergence capability without the dynamics information of the mobile robot to realize the tracking control of the mobile robot. The neuron functions of the hidden layer in the three-layer feedforward network structure consist of the compound cosine function and the compound sine function combining a cosine or a sine function with a unipolar sigmoid function. The main advantages of this NN-based mobile robot control system are better real-time control capability and control accuracy by use of the proposed NN controllers for a nonholonomic mobile robot with nonlinear disturbances. Through simulation experiments applied to the nonholonomic mobile robot with the nonlinear disturbances of dynamics uncertainty and external disturbances, the simulation results show that the proposed NN control system of a nonholonomic mobile robot has better real-time control capability and control accuracy than the compound cosine function NN control system of a nonholonomic mobile robot and then verify the effectiveness of the proposed hybrid trigonometric compound function NN controller for improving the tracking control performance of a nonholonomic mobile robot with nonlinear disturbances.  相似文献   

3.
In this paper a control problem of leader–follower motion coordination of multiple nonholonomic mobile robots is addressed and subsequently in the proposed scheme, a reference trajectory generated based on the information from the leader is tracked by the follower robots. To alleviate demanded information on the leader, specifically to eliminate the measurement requirement or estimation of the leader's velocity and dynamics, a virtual vehicle is constructed whereby its trajectory converges to the reference trajectory of the follower. Trajectory tracking controller is then designed to allow the follower robot to track the virtual vehicle using neural network approximation, in combination with the backstepping and Lyapunov direct design technique and finally the performance and effectiveness of the controller is verified throughout the experiments.  相似文献   

4.
This paper develops a kinematic path‐tracking algorithm for a nonholonomic mobile robot using an iterative learning control (ILC) technique. The proposed algorithm produces a robot velocity command, which is to be executed by the proper dynamic controller of the robot. The difference between the velocity command and the actual velocity acts as state disturbances in the kinematic model of the mobile robot. Given the kinematic model with state disturbances, we present an ILC‐based path‐tracking algorithm. An iterative learning rule with both predictive and current learning terms is used to overcome uncertainties and the disturbances in the system. It shows that the system states, outputs, and control inputs are guaranteed to converge to the desired trajectories with or without state disturbances, output disturbances, or initial state errors. Simulations and experiments using an actual mobile robot verify the feasibility and validity of the proposed learning algorithm. © 2005 Wiley Periodicals, Inc.  相似文献   

5.
This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.  相似文献   

6.
A tracking controller for nonholonomic dynamic systems is proposed which allows global tracking of arbitrary reference trajectories and renders the closed loop system robust with respect to bounded disturbances. The controller is based on [Chwa, D. (2004). Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Transactions on Control Systems Technology, 12(4), 637-644] and shows several generalizations and improvements. The control law for tracking of general nonholonomic systems using inverse kinematic models (IKM) and sliding surfaces is stated. Conditions are proven under which robust tracking is achieved for a specific system. Tracking control is applied to the bi-steerable mobile robot, and simulation results are presented.  相似文献   

7.
Abstract

This work investigates the leader–follower formation control of multiple nonholonomic mobile robots. First, the formation control problem is converted into a trajectory tracking problem and a tracking controller based on the dynamic feedback linearization technique drives each follower robot toward its corresponding reference trajectory in order to achieve the formation. The desired orientation for each follower is selected such that the nonholonomic constraint of the robot is respected, and thus the tracking of the reference trajectory for each follower is feasible. An adaptive dynamic controller that considers the actuators dynamics in the design procedure is proposed. The dynamic model of the robots includes the actuators dynamics in order to obtain the velocities as control inputs instead of torques or voltages. Using Lyapunov control theory, the tracking errors are proven to be asymptotically stable and the formation is achieved despite the uncertainty of the dynamic model parameters. In order to assess the proposed control laws, a ROS-framework is developed to conduct real experiments using four ROS-enabled mobile robots TURTLEBOTs. Moreover, the leader fault problem, which is considered as the main drawback of the leader–follower approach, is solved under ROS. An experiment is conducted where in order to overcome this problem, the desired formation and the leader role are modified dynamically during the experiment.  相似文献   

8.
In this work a neural indirect sliding mode control method for mobile robots is proposed. Due to the nonholonomic property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a kinematics nominal model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate the dynamics of the robot. Using an online adaptation scheme, a neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown nonlinear dynamics. The proposed design simultaneously guarantees the stability of the adaptation of the neural nets and obtains suitable equivalent control when the parameters of the robot model are unknown in advance. The robust adaptive scheme is applied to a mobile robot and shown to be able to guarantee that the output tracking error will converge to zero.  相似文献   

9.
在非完整移动机器人轨迹跟踪问题中,针对机器人运动学与动力学模型的参数和非参数不确定性,提出了一种混合神经网络鲁棒自适应轨迹跟踪控制器,该控制器由运动学控制器和动力学控制器两部分组成;其中,采用了参数自适应的径向基神经网络对运动学模型的未知部分进行了建模,并采用权值在线调整的单层神经网络和自适应鲁棒控制项构成了动力学控制器;基于Lyapunov方法的设计过程保证了系统的稳定性和收敛性,仿真结果证明了算法的有效性。  相似文献   

10.
This paper presents a tracking control with guaranteed prescribed performance (PP) for space free-flying robots with uncertain kinematics (Jacobian matrix) and dynamics, uncertain normal force parameter, and bounded disturbances in a compliant contact with a planar surface. Given the orientation of the surface and a nonlinear model of the elastic force, a controller is designed requiring no information on the robot parameters and the disturbances. This controller will guarantee that the tracking errors satisfy PP indexes such as the maximum steady-state errors and overshoots, and the minimum convergence rates. Thus, contact maintenance can be ensured as prescribed. An approximation of the Jacobian is utilized in the presence of uncertain robot kinematics, and PP position/attitude tracking of the free-flying base is achieved in addition to the PP force/position tracking of the manipulator’s fingertip. The proposed controller is based on an error transformation technique, and a directly tunable gain for the transformed error feedback is introduced in the control to trade off between the tracking performance and control effort. Numerical simulations and comparisons demonstrate the effectiveness and superiority of the proposed controller.  相似文献   

11.
This paper addresses the cooperative adaptive consensus tracking for a group of multiple nonholonomic mobile robots, where the nonholonomic robot model is assumed to be a canonical vehicle having two actuated wheels and one passive wheel. By integrating a kinematic controller and a torque controller for the nonholonomic robotic system, a cooperative adaptive consensus tracking strategy is developed for the uncertain dynamic models using Lyapunov-like analysis in combination with backstepping approach and sliding mode technique. A key feature of the developed adaptive consensus tracking algorithm is the introduction of a directed network topology into the control constraints based on algebraic graph theory to characterise the communication interaction among robots, which plays an important role in realising the cooperative consensus tracking with respect to a specific common reference trajectory. Furthermore, a novel framework is proposed for developing a unified methodology for the convergence analysis of the closed-loop control systems, which can fully ensure the desired adaptive consensus tracking for multiple nonholonomic mobile robots. Subsequently, illustrative examples and numerical simulations are provided to demonstrate and visualise the theoretical results.  相似文献   

12.
In this paper, the leader-waypoint-follower formation is constructed based on relative motion states of nonholonomic mobile robots. Since the robots’ velocities are constrained, we proposed a geometrical waypoint in cone method so that the follower robots move to their desired waypoints effectively. In order to form and maintain the formation of multi-robots, we combine stable tracking control method with receding horizon (RH) tracking control method. The stable tracking control method aims to make the robot’s state errors stable and the RH tracking control method guarantees that the convergence of the state errors tends toward zero efficiently. Based on the methods mentioned above, the mobile robots formation can be maintained in any trajectory such as a straight line, a circle or a sinusoid. The simulation results based on the proposed approaches show each follower robot can move to its waypoint efficiently. To validate the proposed methods, we do the experiments with nonholonomic robots using only limited on-board sensor information.  相似文献   

13.
This paper proposes a sliding‐mode control (SMC) method to achieve practical cooperative consensus tracking for a network of multiple nonholonomic wheeled mobile robots (MNWMRs) with input disturbances. A novel SMC surface under the nonholonomic constraints is first formulated to characterize the network communication interactions among the networked robots under the framework of polar coordinates. A unified distributed consensus tracking strategy is then proposed by systematically combining a position controller and a direction controller. Furthermore, a simple yet general criterion is derived to achieve the desired practical consensus of trajectory tracking and posture stabilization for MNWMRs. In particular, for a specific common consensus trajectory, the complete asymptotic tracking in heading direction can be fully guaranteed when the perfect asymptotic position‐tracking errors are realized. Accordingly, the developed consensus tracking strategy for MNWMRs demonstrates some advantages of control performance including stability, robustness, and effectiveness over the existing control method proposed for their single‐robot counterparts. Some comparative simulation results are given to confirm the effectiveness of the proposed cooperative consensus control method.  相似文献   

14.
Wang  Dongliang  Wei  Wu  Wang  Xinmei  Gao  Yong  Li  Yanjie  Yu  Qiuda  Fan  Zhun 《Applied Intelligence》2022,52(3):2510-2529

Aiming at the formation control of multiple Mecanum-wheeled mobile robots (MWMRs) with physical constraints and model uncertainties, a novel robust control scheme that combines model predictive control (MPC) and extended state observer-based adaptive sliding mode control (ESO-ASMC) is proposed in this paper. First, a linear MPC strategy is proposed to address the motion constraints of MWMRs, which can transform the robot formation model based on leader-follower into a constrained quadratic programming (QP) problem. The QP problem can be solved iteratively online by a delay neural network (DNN) to obtain the optimal control velocity of the follower robot. Then, to address the input saturation constraints, model uncertainties and unknown disturbances in the dynamic model, an improved ESO-ASMC is proposed and compared with the robust adaptive terminal sliding mode control (RATSMC) and the conventional sliding mode control (SMC) to prove the effectiveness. The proposed scheme, considering the optimal control velocity obtained by the kinematics controller as the given desired velocity of the dynamics controller, can implement precise formation control, while solving various physical constraints of the robot, and eliminating the effects of model uncertainties and disturbances. Finally, through a comparative simulation case, the effectiveness and robustness of the proposed method are verified.

  相似文献   

15.
针对模型参数未知和存在有界干扰的非完整移动机器人的轨迹跟踪控制问题,本文提出了一种鲁棒自适应轨迹跟踪控制器方法.非完整移动机器人的控制难点在于它的运动学系统是欠驱动的.针对这一难点,本文利用横截函数的思想,引入新的辅助控制器,使得非完整移动机器人系统不再是一个欠驱动系统,缩减了控制器设计的难度,进而利用非线性自适应算法和参数映射方法构造李雅谱诺夫函数.通过李雅普诺夫方法设计控制器和参数自适应器,从而使得非完整移动机器人的跟随误差任意小,即可以任意小的误差来跟随任意给定的参考轨迹.仿真结果证明了方法的有效性.  相似文献   

16.
The paper addresses the problem of environmental boundary tracking for the nonholonomic mobile robot with uncertain dynamics and external disturbances. To do environmental boundary tracking, a reference velocity is designed for the nonholonomic mobile robot. In this paper, a radial basis function neural network (NN) is used to approximate a nonlinear function containing the uncertain model terms and the elements of the Hessian matrix of the environmental concentration function. Then, the NN approximator is combined with a robust control to construct a robust adaptive NN control for the mobile robot to track the desired environment boundary. It is proved that the tracking error can be guaranteed to converge to zero in the ultimate. Simulation results are presented to illustrate the stability of the robust adaptive control. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A dynamical extension that makes possible the integration of a kinematic controller and a torque controller for nonholonomic mobile robots is presented. A combined kinematic/torque control law is developed using backstepping, and asymptotic stability is guaranteed by Lyapunov theory. Moreover, this control algorithm can be applied to the three basic nonholonomic navigation problems: tracking a reference trajectory, path following, and stabilization about a desired posture. The result is a general structure for controlling a mobile robot that can accommodate different control techniques, ranging from a conventional computed-torque controller, when all dynamics are known, to robust-adaptive controllers if this is not the case. A robust-adaptive controller based on neural networks (NNs) is proposed in this work. The NN controller can deal with unmodeled bounded disturbances and/or unstructured unmodeled dynamics in the vehicle. On-line NN weight tuning algorithms that do not require off-line learning yet guarantee small tracking errors and bounded control signals are utilized. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
This paper investigates the leader–follower formation control problem for nonholonomic mobile robots based on a bioinspired neurodynamics based approach. The trajectory tracking control for a single nonholonomic mobile robot is extended to the formation control for multiple nonholonomic mobile robots based on the backstepping technique, in which the follower can track its real-time leader by the proposed kinematic controller. An auxiliary angular velocity control law is proposed to guarantee the global asymptotic stability of the followers and to further guarantee the local asymptotic stability of the entire formation. Also a bioinspired neurodynamics based approach is further developed to solve the impractical velocity jumps problem. The rigorous proofs are given by using Lyapunov theory. Simulations are also given to verify the effectiveness of the theoretical results.  相似文献   

19.

This paper studies the tracking problem of nonholonomic wheeled robots subject to control input constraints. In order to take optimality considerations into account while designing saturated tracking controllers, a Lyapunov-based predictive tracking controller is developed, in which the contractive constraint is characterized by a backup global saturated tracking controller. Theoretical results on ensuring global feasibility and closed-loop stability of the controller are provided. In addition, the proposed methodology admits suboptimal solutions. Finally, numerical simulations are performed to verify the effectiveness of the proposed control strategy.

  相似文献   

20.
针对含运动学未知参数以及动力学模型不确定的非完整轮式移动机器人轨迹跟踪问题,基于Radical Basis Function(径向基函数)神经网络,提出了一种鲁棒自适应控制器.首先,考虑移动机器人运动学参数未知的情况,提出了一种含自适应参数的运动学控制器,用以补偿参数不确定性导致的系统误差;其次,利用神经网络控制技术,对于机器人在移动中动力学模型不确定问题,提出了一种具有鲁棒性的动力学控制器,使得移动机器人可以在不知道具体动力学模型的情况下跟踪到目标轨迹;最后利用Lyapunov稳定性理论证明了整个系统的稳定性.通过数值仿真验证了所设计的控制器的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号