首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
并网逆变器在传统低电压穿越控制中存在有功功率指令不明确,易受直流电压外环控制参数影响的问题。此外两级式光伏并网系统中前级DC-DC变换器根据直流母线电压波动情况被动调整光伏输出功率,导致光伏侧动态响应速度较慢。提出了一种结合超级电容的两级式光伏并网系统不对称故障低电压穿越控制策略,该策略重点关注低电压穿越期间光伏侧的输出特性,可根据逆变器的输出能力计算其可输出的最大有功功率,利用直流母线两端的超级电容变换器稳定母线电压,光伏升压变换器用于控制光伏功率出力以快速与逆变器有功功率出力匹配。仿真结果表明,在不对称故障下,所提方法可在稳定直流母线电压的同时,实现光伏侧输出功率的快速调节。  相似文献   

2.
并网电网不对称故障会在网侧电压电流中产生2倍工频的正序和负序分量,2倍工频分量会导致并网电流畸变,甚至损坏并网变流器,影响直流母线电压稳定运行。针对风电不对称故障引起的电压波动,提出一种基于超导磁储能(SMES)的不对称故障穿越改进控制策略,分析不对称故障时并网变流器的功率模型特点,在传统不对称故障电流闭环控制中引入零序电流控制环,消除并网负序电流和有功功率波动;考虑电网故障会在直流侧堆积有功功率,造成直流母线电压波动,改进传统斩波器电压电流环,引入功率校正环节,及时消纳故障期间直流侧有功功率堆积,降低直流母线电压波动,最后构建仿真和实验平台验证所提方法的有效性。  相似文献   

3.
首先根据电网故障特征,分析了直驱风力发电机组在故障运行条件下的功率关系,根据分析结果将电网故障情况下机组实现故障穿越所面临的问题总结为由电网电压正序分量有效值下降带来的“有功不平衡”和电网电压负序分量带来的“功率波动”2类问题.在此基础上,对目前直驱风力发电机组的故障穿越方法进行了总结和分类,将“有功不平衡”控制策略分为减小发电机的输出功率来减小换流器的输入功率、在直流母线处消除不平衡功率、增大网侧换流器输出功率能力3种方法;将“功率波动”控制策略分为消除并网电流负序分量和消除直流母线电压纹波2种方法,并分析了不同方法的优缺点.根据现有方法的优缺点对直驱风力发电机组故障穿越控制方法的研究方向进行了展望.  相似文献   

4.
传统低电压穿越控制下,两级式光伏并网系统的前级和后级变换器控制相互独立。因此前级变换器需要根据直流母线电压波动被动地调整其输出功率,动态响应速度较低。针对这一问题,提出了一种基于有功功率指令共享的两级式光伏并网系统低电压穿越控制策略。该策略可以根据网侧电压降落深度动态调整后级变换器的有功功率指令,同时使光伏阵列根据该有功功率指令主动调整输出功率,保持直流母线电压恒定。通过仿真和实验将所提控制策略与现有的低电压穿越控制策略进行对比分析,结果表明:所提控制策略下光伏阵列的输出电压、电流的波动明显减小,且2台变换器输出功率动态响应加快,验证了所提控制策略的有效性。  相似文献   

5.
基于超级电容的光伏并网低电压穿越控制策略研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对光伏系统在电网扰动或故障时突然脱网给电网带来严重后果,对基于超级电容的光伏并网系统的低电压穿越控制策略进行研究。在电网电压跌落时,通过控制超级电容吸收有功功率,平衡直流母线电压,减少光伏阵列注入逆变器的功率,防止逆变器过流。同时保证了逆变器的无功电流输出能力,支撑电网电压,实现系统的低电压穿越。利用系统仿真模型进行验证,结果表明该方法提高了光伏并网的低电压穿越能力,在保证光伏系统安全运行的同时,大大提高了无功支撑能力,稳定了电网电压,利于故障恢复。  相似文献   

6.
盈余功率积累可能诱发基于模块化多电平换流器的高压柔性直流输电系统(high-voltage direct current based on the modular multilevel converter,MMC-HVDC)过压闭锁,乃至引发海上风电场机组失步或受端电网低频减载。现有降压或升频等直流电压控制方法仅针对伪双极接线,缺乏讨论不同控制模式的换流器间协同原则;且控制参考值未能自适应受端电网的故障严重程度,导致海上风电场有功功率调节过量。该文基于受端电网故障下MMC-HVDC平均值模型,解析了海上正负极换流器和风电场的功率耦合特性,提出了交流母线电压控制极换流器平衡换流站间有功功率,有功和无功功率控制极换流站抑制极间不平衡的协同原理。通过解析海上风电场在交流母线电压控制极换流器降压作用下的功率外特性,提出了恰好避免直流电压越限的临界交流母线电压计算方法。通过解析使得受端换流站有功电流受限的交流母线电压作为启动门槛,提出了受端电网故障下真双极MMC-HVDC电压协同控制方法。理论分析和仿真结果表明,所提方法令海上正负极换流器分别运行于临界交流母线电压和抑制极间不平衡的有功功率,可在避免直流电压越限的前提下,最大限度提升MMC-HVDC在受端电网故障工况下的有功功率传输能力。  相似文献   

7.
针对两级并网光伏系统在光伏阵列功率波动时难以兼顾最大功率点跟踪和母线电压稳定控制的问题,提出一种应用于单相两级并网光伏系统的混合控制算法。该算法利用交错Boost变流器中的一只全控型器件对最大功率点进行快速跟踪,而另一只全控型器件对光伏系统的直流母线电压进行稳定控制,从而同时实现最大功率跟踪和直流母线电压稳定的控制。理论分析和仿真结果表明,所提出的混合控制策略在稳态时能使光伏系统工作在最大功率点处;当输入功率发生剧烈变化时,光伏系统的直流母线电压波动较小,有效地避免直流母线电压在功率波动时的电压冲击,提高了直流母线电容的使用寿命。  相似文献   

8.
针对大规模集中式风电并网过程中送端系统频率波动以及电能输送损耗严重等问题,提出一种基于电压源型换流器高压直流输电(VSC-HVDC)的大规模风电并网系统频率稳定控制方法。VSC送端换流器通过调节脉宽调制(PWM)移相角来控制交流侧电压相位大小,以达到控制线路有功功率传输的目的,从而保证风电并网系统有功功率的平衡及系统频率的稳定,同时通过调节PWM调制比来调节交流电压,使系统电压维持稳定;受端换流器控制直流侧电压的稳定,以保证VSC-HVDC系统的正常运行。通过在Power Factory Digsilent上进行仿真,验证了该控制策略能显著增强系统的频率稳定性。  相似文献   

9.
针对并网运行的直流微网低电压穿越问题,分析了光储荷直流微网系统构成及运行原理,得出了直流母线电压解析表达式。基于不同电压跌落幅度及变流器最大承载电流限制,提出了一种计及光储荷特性的母线电压分层协调控制策略,依据母线电压波动幅度和微网功率状态,综合调整各单元运行模式来实现系统低电压穿越,提升了系统低电压穿越期间功率平衡及直流母线电压稳定水平。最后通过MATLAB/Simulink平台搭建仿真实例,验证了所提低电压穿越控制策略的可行性和对直流母线电压更好的控制效果。  相似文献   

10.
有功功率回流是级联H桥型光伏并网逆变器在电网不对称跌落故障条件下固有的问题,可能导致系统没有平衡运行点,H桥直流母线电压持续增大,逆变器因过电压保护而停机脱网。为此,该文以电网故障发生率最高的单相短路故障为研究目标,回顾现有控制方法,并定量地分析其局限性——在电网电压跌落较深且光伏阵列输出功率较低的工作场景下无法避免有功回流。在此基础上,提出一种适用于级联模块化中压光伏发电系统在单相短路故障条件下的有功功率回流抑制策略,根据光伏阵列实际输出的有功功率将系统的运行划分为两个区域,通过合理地设计系统的调制度,并在不同的运行区域内采用不同的控制方法,能够提高级联H桥光伏并网逆变器对不同的输出功率以及不同电网跌落深度的适应性,以改善系统的故障穿越能力。最后,通过实验验证了所提控制策略的有效性和可行性。  相似文献   

11.
光伏直流升压汇集场站中,光伏列阵经DC/DC升压后汇集,再由DC/AC换流站逆变后接入交流电网。对于多个光伏直流升压场站并网系统,并网DC/AC换流站输出无功电流大小受自身容量与端口电压跌落程度影响,在协调机制不明确情况下,无功整定困难,靠近故障的场站存在脱网风险。为此,在分析各DC/AC换流站无功出力对端口电压影响的基础上,提出了光伏直流升压场站并网系统整体协同低电压穿越控制策略。进入低穿后,DC/AC换流站检测本地端口电压,立即向电网注入无功进行支撑;总控站利用通信获知各换流站的端口电压,进而协调各换流站的无功电流输出额度。同时,在分工况细化协调机制的基础上,对DC/AC换流站无功电流输出进行通用化整定。仿真结果表明,所提控制策略在交流电网发生故障时,能有效协调各DC/AC换流站进行无功补偿,提高系统整体低电压穿越能力。  相似文献   

12.
光伏电站经柔性直流集电送出系统在交流电网发生故障扰动时应该具备低电压穿越的能力。针对受端和送端交流电网发生故障扰动的情况,提出了一种不依靠通信的光伏电站与VSC-HVDC的低电压穿越协调控制策略。交流电网故障情况下,VSC-HVDC送、受端换流器可依据直流电压的变化量切换控制模式。送端换流器根据VSC-HVDC直流电压的变化量调节光伏电站出口的电压幅值,使光伏电站感受到电压变化并减小有功功率输出,从而迅速维持VSC-HVDC系统的功率传输平衡,提升系统故障穿越能力,而且可以实现直流电压的稳态无差控制。应用Matlab/Simulink仿真软件搭建了1000 MW光伏电站与VSC-HVDC系统的仿真模型,验证了所提协调控制策略的有效性。  相似文献   

13.
光储微电网的低电压穿越控制策略研究   总被引:5,自引:0,他引:5       下载免费PDF全文
针对微电网低电压穿越问题,基于光储微电网系统提出一种光储协调控制的低电压穿越策略。在低电压期间,光伏系统采用最大功率跟踪控制,储能系统采用恒压控制维持直流母线电压恒定,在储能出力已达功率限值仍不能维持直流母线电压在允许范围内时,光伏系统切换为恒压控制。考虑到光储微电网负荷波动性大的特点,设计了一种适用于光储微电网并具有无功补偿功能的限流控制策略,为电网提供电压支撑,同时避免并网逆变器输出过电流。仿真结果表明,控制系统能够充分利用光伏发电能量、维持直流母线电压的恒定、抑制并网电流过电流并能发出无功功率支撑并网点电压,实现了低电压穿越,验证了该LVRT控制策略的有效性。  相似文献   

14.
针对大规模风电外送可靠性问题,提出风火打捆经混合三端直流输电并网系统拓扑结构并设计各换流器的控制策略。混合三端直流输电系统的发电端由两个自然换相(LCC)整流器组成,受端由一个电压源型逆变器(VSC)与外电网相连。风电场群侧LCC1换流器采用定有功功率的控制策略,可以追踪最大功率;火电厂侧LCC2换流器采用定直流电流控制策略,可以平抑风功率波动。受端换流站控制器VSC采用定直流电压和定无功功率控制策略,能有效应对换流站侧交流系统短路故障和负荷突变等工况。仿真结果表明所提控制方案的有效性。这种输电模式能够综合利用常规直流输电和轻型直流输电各自的优点,有效扩展常规风火打捆直流输电系统的适用范围。  相似文献   

15.
针对直流微网低电压穿越问题,基于光伏直流微网在综合考虑低电压穿越控制要求以及故障期间光伏出力、负荷随机波动性大对系统运行造成影响的基础上,分析了系统在不同运行工况下的能量流动特性,提出一种光储荷协调控制以及有功无功协调控制的系统整体控制方法。在低电压期间,通过光储荷协调配合控制稳定直流母线电压,同时平衡系统能量;网侧变流器根据电网电压幅值,实现有功无功协调限流控制,提供无功功率支撑网侧电压恢复,同时避免网侧变流器输出过流。最后,在Matlab/Simulink平台搭建仿真实例,仿真结果表明所提控制策略能够实现系统能量最优利用,满足系统低电压穿越要求,保障系统可靠运营,从而验证了该LVRT控制方案的有效性。  相似文献   

16.
针对转子Crowbar电路的双馈风力发电机组低电压穿越需要闭锁变流器控制脉冲、直流母线电压波动无法较好地抑制,提出了一种定子Crowbar电路模式切换的双馈风电机组低电压穿越控制方案。电网发生故障时,定子Crowbar电路接入系统,双馈风电机组切换至感应发电机组模式下,转子侧变流器采用转子功率外环控制,网侧变流器采用功率协调控制方案,将机侧功率当作前馈量引入到网侧变流器控制策略中并向电网注入无功功率。仿真分析表明,所提控制方案在确保实现双馈风电机组低电压穿越的同时,能够有效地降低转子暂态电流、稳定直流母线电压,并向电网提供无功功率。  相似文献   

17.
光伏直流升压汇集系统经较大过渡电阻的故障清除后,存在直流变压器难以切换回原有控制策略的问题。针对此,在分析故障点过渡电阻和直流电压波动量之间关系的基础上,提出了一种基于电网电压增量前馈补偿的故障后恢复控制策略。在故障清除时,通过监测电网电压增量值,采用修正逆变器控制外环直流电压参考值的方式短时增大直流母线电压的波动量,从而使直流变压器实现控制策略的可靠切换。仿真结果表明,所提方法在交流电网经较大过渡电阻发生的故障被清除后,光伏侧控制策略能可靠且快速地进行切换,有效提高了光伏的利用率。  相似文献   

18.
为实现内陆大规模风电的可靠并网,采用高压直流输电技术和架空线路进行远距离电能传输是有效的解决方案。由于架空线易发生线路故障,采用具有故障自清除能力的换流器拓扑是主要解决途径之一。采用混合型模块化多电平换流器来进行风电并网,设计了不依赖于换流站间通信的并网系统交直流故障无闭锁穿越策略。系统无闭锁故障穿越期间并网点交流电压可控,风机可维持正常运行。考虑到故障期间风机持续并网输出功率,设计了耗散电阻和与风机内部斩波电阻相配合的策略,以耗散多余的能量。最后,通过PSCAD/EMTDC的多组仿真,验证了并网系统无闭锁穿越交直流故障及快速恢复的有效性。  相似文献   

19.
应对电网电压骤降的双馈感应风力发电机Crowbar控制策略   总被引:11,自引:1,他引:10  
蒋雪冬  赵舫 《电网技术》2008,32(12):84-89
双馈感应发电机(doubly fed induction generator,DFIG)具有有功、无功功率独立调节的能力及励磁变频器所需容量小等优点,在风力发电系统中得到了广泛应用,但由于励磁变频器的容量较小,使其在电网故障下的控制能力受到限制。为保护励磁变频器,需要采用Crowbar装置在电压骤降时为转子浪涌电流提供通路,并限制转子电流增大。文章提出了一种Crowbar控制策略,能有效抑制转子过电流、直流母线过电压以及电磁转矩的振荡,并可向电网注入无功电流以帮助电网电压的恢复。仿真结果验证了这种控制方式能使DFIG在大幅电压骤降故障下实现不间断运行,有效提高了DFIG风电机组运行的可靠性。  相似文献   

20.
在传统不对称故障低电压穿越控制中,囿于控制自由度有限,并网逆变器控制存在输出电流负序分量和直流侧电压二倍频波动抑制两个目标无法同时实现的问题。针对该问题,本文提出了一种不对称故障下两级式光伏并网系统低电压穿越的多目标解耦控制策略。该策略将逆变器的控制目标设置为输出电流负序分量抑制,给出了综合考虑逆变器输出电流限幅和无功输出需求的逆变器电流内环控制参考值计算方法;通过双向Buck-Boost变换器将超级电容接入直流母线电容两端维持其电压稳定,并将直流侧电压二倍频波动转移至超级电容输入侧进行抑制。仿真结果表明,在所提控制策略下逆变器三相间的不平衡度降低,输出电流畸变得到改善,直流侧电压二倍频波动相比传统控制方法明显减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号