首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用化学沉淀法制备出超级电容器用纳米MnO2电极材料,研究了热处理工艺对MnO2电容性能的影响。结果表明,产物主相为α-MnO2,粒度分布较均匀,在50~100 nm;热处理温度和时间对MnO2的电容性能有着重要影响。将在300℃热处理3 h的MnO2与活性炭电极组成非对称超级电容器,循环充放电500次,容量仅衰减2.24%;在电流密度为500 mA/g时,比电容量达302.52 F/g。  相似文献   

2.
采用原位化学氧化聚合的方法制备了一系列不同纳米TiO2含量的PANI/TiO2纳米复合材料,利用FI-IR、TG、XRD、TEM、SEM等方法对产物进行了结构表征和性能研究.研究表明:PANI包覆在TiO2表面,形成分散均匀的纳米复合粒子,直径约20~30nm; PANI/TiO2纳米复合材料有一定程度的晶化;在复合材料中,TiO2和聚苯胺分子链之间存在强的相互作用,并对复合材料的热稳定性起促进作用:通过UV-Vis、荧光光谱探讨了掺杂纳米TiO2粒子对PANI光学性能的影响,结果表明:PANI/TiO2纳米复合材料在紫外和可见光区域均有较强吸收,并在348nm处激发产生荧光,荧光强度随着TiO2的掺杂出现较大的提高.  相似文献   

3.
将碳纳米管(CNT)和聚吡咯纳米线(NPPy)通过超声附着到纺织纤维——聚酯纤维上,制备了CNT/NPPy/聚酯纤维复合柔性电极和全固态纤维状柔性超级电容器。通过扫描电子显微镜、傅立叶红外光谱和拉曼光谱对复合电极的形貌和结构进行表征,通过循环伏安法和充放电测试等研究了超级电容器的电化学性能。充放电测试结果表明所制备的纤维状柔性超级电容器具有较高的比容量,其表面积比容量为6.34×10–3 F/cm~2,长度比电容为0.36×10–3F/cm(充放电电流密度:1.7×10–6A/cm~2)。且其循环800圈后,电容只下降33%,当弯曲500次后,该超级电容器的电容量保持率为76%,显示出了良好的柔性和弯曲稳定性。该柔性纤维状超级电容器的制备方法步骤简单,成本低廉,所制备的柔性纤维状超级电容器可纺织到衣服面料或其他纺织品中,在便携式和可穿戴电子产品中具有潜在应用前景。  相似文献   

4.
雷鑑铭  陈小梅 《半导体学报》2015,36(8):083006-5
采用溶胶-凝胶法和水热合成反应法分别制备了氧化钌和氧化锰电极材料。进而采用胶体法制备了不同配比的氧化钌/氧化锰复合电极材料。利用扫描电镜和X射线衍射仪分别对电极材料的形貌及其结构进行表征。通过循环伏安法、恒流充放电、交流阻抗谱对复合电极进行电化学性能测试。结果表明:在氧化钌中加入适量的氧化锰的有助于降低氧化钌的成本和提高氧化钌的阻抗特性,当氧化锰的含量为60wt%时,在38%的H2SO4溶液中,扫描速度为20mV/s时,复合电极的比电容为438F/g,内阻为0.304Ω,且在经过300次循环充放电后,比容量仍保持92.5%,可作为较理想的超级电容器电极材料。  相似文献   

5.
固相合成法制备了MnO2电极材料,以其为正极,活性炭(AC)电极为负极,组装了有机电解液MnO2/AC混合电容器。测试结果表明,在1 mol/L的有机电解液LiPF6/(DMC+EC)中,混合电容器的工作电压可达2.5 V,在不同的电流密度下,比容量为43.64~53.17 F/g,漏电流为0.08×10–3 A/cm2,经1 000次恒流充放电循环后,比容量衰减幅度约为8%。  相似文献   

6.
金属-有机框架(MOF)衍生的过渡金属硒化物和多孔碳纳米复合材料具有巨大的储能优势,是应用于电化学储能的优良电极材料。采用共沉淀法制备CoFe类普鲁士蓝(CoFe-PBA)纳米立方,并通过静电组装在CoFe-PBA上包覆聚吡咯(PPy)得到CoFe-PBA@PPy;通过在400℃氮气中退火并硒化成功制备了氮掺杂的碳(NC)包覆(CoFe)Se2的(CoFe)Se2@NC纳米复合材料,并对其结构和形貌进行了表征。以(CoFe)Se2@NC为电极制备了超级电容器,测试了其电化学性能,结果表明,在电流密度1 A/g时超级电容器的比电容达到1047.9 F/g,在电流密度5 A/g下1000次循环后具有良好的循环稳定性和96.55%的比电容保持率。由于其性能优越、无毒、成本低和易于制备,未来(CoFe)Se2@NC纳米复合材料在超级电容器中具有非常大的应用潜力。  相似文献   

7.
纳米MnO_2的水热合成及其在LiPF_6中的电容行为   总被引:1,自引:0,他引:1  
以硫酸锰和次氯酸钾为主要原料,在酸性条件下水热合成了MnO2纳米丝球。通过XRD和SEM分析了MnO2的晶体结构和表面形态。应用循环伏安、恒电流充放电、交流阻抗等方法研究了该MnO2电极在1mol/LLiPF6(DMC+EC)有机电解液中,0~2.5V的电位的电容行为。结果表明:样品为α-MnO2,丝球平均直径约20μm,单丝直径约80nm,长度在3~5μm。该MnO2电极具有良好的电容性能,180mA/g电流密度下初始比容量达129.3F/g,相应能量密度为45.7Wh/kg。  相似文献   

8.
以Mn(NO3)2、活性中间相碳微球(活性MCMB)为原料,采用KBrO3氧化法,成功制备了MnO2/活性MCMB新型复合电极材料;以该材料制成电极,并以质量分数为30%的KOH溶液为电解液,组装成扣式电容器。通过XRD和SEM分析了MCMB,活性MCMB及MnO2/活性MCMB的晶相结构和表面形态;采用循环伏安、交流阻抗和恒流充放电法研究了电容器的电容性能。结果表明:以MnO2/活性MCMB复合电极制成的电容器电容性能优良。在0.5A/g电流密度下,其充放电曲线表现出典型的电容行为,初始比容量高达403.5F/g,相应能量密度为12.5Wh/kg;其循环伏安曲线关于零电流线对称,呈现为较规则的矩形;其等效串联电阻约为0.7Ω。  相似文献   

9.
超电容器活性炭/炭黑复合电极电容特性研究   总被引:3,自引:0,他引:3  
为制备实用化的超电容器,对活性炭材料进行了表征,详细描述了活性炭/炭黑复合电极的制备工艺。通过循环伏安法和恒电流充电法,对活性炭/炭黑复合电极在水系电解液中的电容行为进行了研究。结果表明:活性炭的BET比表面积达1 654 m2/g,具有合理的孔径分布,主要在2 nm附近。添加高比表面积、高导电性纳米级炭黑制备的活性炭/炭黑复合电极具有优良的电容行为和较好的功率特性,复合电极的比容量达到102.4 F/g。此外还对孔径分布与电容的关系进行了阐述。  相似文献   

10.
作为锂空气电池的关键组成部分之一,正极材料性质对锂空气电池的性能起到重要影响。以CNT为碳载体,以α-MnO_2为催化剂,制备CNT/α-MnO_2复合电极作为电池正极。通过恒流定容充放电测试、深度充放电测试、循环伏安测试、电化学阻抗谱测试和扫描电镜测试,研究CNT/α-MnO_2复合正极材料对锂空气电池性能的影响,并获得最优电极材料配比。研究表明:制备的CNT/α-MnO_2复合电极表现出高循环稳定性和高催化活性,显著提升了锂空气电池的性能;当正极材料中CNT与α-MnO_2的质量比为3∶6时,装备CNT/α-MnO_2复合正极的锂空气电池表现出最佳性能,其循环次数高达170次。  相似文献   

11.
通过一种自下而上的高温裂解方法制成一种碳点(CD),并在此基础上以碳布(CC)为衬底合成了碳点修饰的二氧化锰(CD/MnO2)复合电极.对合成的CD/MnO2/CC进行表征分析,发现生成的CD/MnO2较均匀地生长在碳纤维上,高分辨率透射电子显微镜(HRTEM)下CD/MnO2呈分层纳米片状.对CD/MnO2/CC进行...  相似文献   

12.
掺CeO2纳米MnO2非对称超级电容器的研究   总被引:2,自引:0,他引:2  
采用化学共沉淀法制备出超级电容器用掺CeO2的MnO2电极材料,通过XRD、SEM对样品进行了表征,研究了掺杂量对MnO2电极稳定性能的影响。结果表明,产物主相为α-MnO2,粒度分布较均匀,在50~100nm;在6mol/L的KOH电解液中,该掺杂MnO2电极材料具有优良的电容行为和循环稳定性能。当掺CeO2量为10%(与MnO2的质量比)时,在电流密度为250mA/g时,比电容量达257.68F/g;循环500次,容量仅衰减1.18%。  相似文献   

13.
利用两步法成功制备出两种MnCo_2O_4纳米等级结构材料,研究了其电化学性能。结果证实得到的纳米片为MnCo_2O_4纳米等级结构,并均匀生长在泡沫镍基底上,电化学性质测试表明,这种纳米片/泡沫镍复合电极表现出优异的电化学性质。这种优异的性质与介孔的Mn Co2O4纳米片这一新颖的结构有密切的关系,5 A/g时的比电容值高达475 F/g。MnCo_2O_4/泡沫镍复合材料是一种非常有潜力的超级电容电极材料,MnCo_2O_4纳米材料结构和形貌对超级电容器电极材料的电化学性质有较大的影响。  相似文献   

14.
采用固相法制备了MnO2,并对其结构进行表征。以所制备的MnO2作为电极活性物质,组装成超级电容器,对其电化学性质进行研究,结果表明,所组装超级电容器的等效串联电阻为1.875m?,功率密度为192W/kg,能量密度为2.306W·h/kg,电容器的充电电容为11671.4F,放电电容为11534.3F,充放电效率为98.8%,经多次循环后电容器性能良好。  相似文献   

15.
将多组分活性材料组合成新的结构用作电极材料是提高超级电容器性能的一种有效措施。采用典型的两步水热法与电沉积法制备了FeCo2S4/Ni(OH)2复合纳米材料,并表征其物理及电化学性能。结果表明,FeCo2S4纳米花被电沉积上的Ni(OH)2纳米片包围,形成三维互连网状结构,有利于电极材料与电解液的充分接触。所得的FeCo2S4/Ni(OH)2复合电极材料显示出极高的比电容(当电流密度为1 A·g^-1时,比电容达1588.2 F·g^-1)、优异的倍率性能及循环稳定性。此外,以FeCo2S4/Ni(OH)2为正极、活性炭为负极组装了非对称超级电容器。结果显示,非对称超级电容器具有高能量密度及良好的循环稳定性。  相似文献   

16.
在三氯化钌(RuCl3)水溶液中,采用循环伏安法在铜电极表面电沉积氧化钌(RuO2)作为超级电容器电极材料。为了提高材料的电化学性能,在电沉积液中引入了氧化石墨烯(GO)水溶液,制备出RuO2/GO复合电极。采用扫描电镜(SEM)观察两种电极的表面形貌,发现氧化钌及其复合电极经60℃干燥处理1 h后,颗粒更均匀且存在明显的多孔特征,电极材料具有良好的表面特性。电化学测试结果表明,扫描速度为0.1 V/s、工作电位窗口为1 V时,两种电极比电容分别为636.5和938 F/m2,功率密度分别为31.83和46.9 W/m2。因此,RuO2/GO复合电极具有较好的电容特性,适合用作超级电容器电极材料。  相似文献   

17.
模板法制备超级电容器活性炭电极材料   总被引:2,自引:1,他引:1  
以硅溶胶为模板剂,酚醛树脂为炭源,采用模板法制备了超级电容器活性炭电极材料。利用SEM和BET对实验制备的活性炭进行了分析和表征。以实验研制的活性炭为电极材料,通过循环伏安和恒流充放电测试对其电容性能进行了研究。结果表明:实验研制的活性炭的比表面积为1840m2/g,在7.5×10–3A/cm2的电流密度下,其比容达到290F/g。  相似文献   

18.
采用静电纺丝制备高性能、薄膜纤维结构电极的超级电容器。制备了均匀对称的三明治式固态超级电容器,其电极为静电纺丝制备的聚苯胺、多壁碳纳米管、聚氧化乙烯薄膜结构,电解质为聚乙烯醇和硫酸。研究了静电纺丝参数对纤维直径的影响,通过改变纺丝距离和溶液流量可以获得微孔薄膜纤维电极。当纺丝距离从80 mm提高到140 mm,纤维的平均直径从3.22μm降低到1.40μm,相对应电极的比电容从70 F/g上升到95 F/g。用这种纤维结构电极制备的超级电容器表现出很好的循环稳定性,用平均纤维直径1.40μm的电极制作的超级电容器在1 000次充放电之后比电容仍能保持90%。  相似文献   

19.
PANI/TiO2和PANI/TiO2/HCSA纳米复合材料的光电性能   总被引:1,自引:0,他引:1  
采用原位聚合的方法制备了PANI/TiO2纳米复合材料,用樟脑磺酸掺杂PANI/TiO2(EB)得到纳米复合膜.使用红外光谱、紫外光谱、荧光光谱及透射电镜探讨了复合材料的光电性能.  相似文献   

20.
采用脉冲电沉积法,于苯胺、浓硫酸和碳纳米管(CNTs)的混合溶液中,制备得到PANI(聚苯胺)/CNTs复合物,并对所制PANI/CNTs复合材料的微观形貌、结构以及电化学性能进行了研究。结果表明,CNTs的加入增大了PANI/CNTs复合物的比表面积,提高了其导电性。PANI/CNTs复合物用作超级电容器电极材料时,其比容量可达420.7 F/g,经500次循环后衰减幅度为8.9%,表现出优良的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号