首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two steels with different sulfur contents: 0.003 and 0.024 wt pct, were cathodically charged under three different conditions and brought to fracture in tension immediately after charging or after aging at room temperature. All hydrogen charged specimens showed embrittlement, with a little higher loss of ductility in the high sulfur steel. The hydrogen embrittlement was reversible in both steels when specimens were charged in arsenic-free sulfuric acid solution at room temperature but was irreversible when charged in arsenic-containing acid at the same temperature. After charging in molten salts at 200 °C, some of the low sulfur steel specimens exhibited irreversible hydrogen damage with the appearance of quasicleavage fractures, while all high sulfur steel specimens were restored to the uncharged ductility by aging at room temperature. These results are interpreted by assuming that an increased sulfur content in steel increases the density of trapping sites for hydrogen at the sulfide/matrix interfaces. These traps are inactive above 150 °C and become operative after cooling. Therefore, at the same hydrogen content in steel after cooling, the greater content of sulfur results in a decreased activity of the lattice dissolved hydrogen, hence in reduced embrittlement.  相似文献   

2.
采用Gleeble-1500热模拟试验机测量了高碳钢连铸板坯的高温力学性能,得到了第Ⅰ、第Ⅲ脆性温度区的温度范围.结果表明:第Ⅰ脆性温度区脆化的主要原因是晶界部位的低熔点物质在高温下首先熔化,从而导致试样沿晶界开裂;第Ⅲ脆性温度区脆化的主要原因是在奥氏体部位析出的网状铁素体导致试样沿晶界开裂;在奥氏体单相区,由于氮化铝的析出导致钢种的塑性恶化.  相似文献   

3.
The increased recycling of scrap leads in conventional steels to an increased content of undesirable trace elements. When scrap is used for steel production, the influence of precipitate‐forming or solid solution hardening trace elements in particular on the process and use properties has to be taken into account. The influence exerted by the elements niobium, titanium, chromium and molybdenum has been studied on the example of unalloyed deep drawing steels which are mainly used for the manufacture of automobiles. The production process – beginning with continuous casting, through hot rolling, cold rolling down to annealing – was simulated experimentally in laboratory equipment, and in parallel with a continuous casting simulator, forming dilatometer and high temperature conductimeter. Light‐optical microscopy and the EBSP measurements were used to characterise the pertaining microstructures. The mechanical final characteristics were determined in tensile tests. The results relating to continuous casting illustrate the influence of trace elements on precipitation, cracking, hot ductility and the phase transition from austenite in ferrite. The work softening during the hot rolling depends on the nature and the precipitation state of the foreign elements. The interplay of coiling temperature, precipitation and annealing temperature influences the softening during the annealing after the cold rolling. It could be shown that a large part of this takes place during the recovery. The analysed trace elements influence the final characteristics via hardening and grain sizes.  相似文献   

4.
The mechanical properties of a new ferritic stainless steel consisting essentially of 29 pct Cr, 4 pct Mo, 2 pct Ni (29-4-2) have been evaluated. The mechanical properties of the alloy are dependent on the thermomechanical processing and the final heat treatment conditionsi.e., both annealing temperature and cooling rate from the anneal. The alloy has excellent toughness, ductility and strength at room temperature when fast cooled from elevated temperatures. Slow cooling from elevated temperatures results in a degradation of impact resistance and an increase in strength. The alloy is subject to two major forms of embrittlement. One form results from the precipitation of intermetallic compounds in the temperature range 704°C (1300°F) to 954°C (1750°F) while the other results from the classical phenomenon called 475°C (885°F) embrittlement in the temperature range 399°C (750°F) to 510°C (950°F). Degradation of room temperature impact resistance occurs faster after the high temperature type of embrittlement and failure is characterized by an intergranular fracture mode. Embrittlement after exposure to 475°C (885°F) results in a slower degradation in toughness and results in failure by a transgranular cleavage mode. Impact resistance and tensile ductility are also decreased by exposure to 593°C (1100°F); however, to a lesser degree than 475°C (885°F) or 760°C (1400°F) exposure. The alloy deforms by slip or twinning depending on the metallurgical condition of the material. Deformation by twinning rather than slip is not manifested by a reduction in either toughness or ductility. Exposure to 482°C (900°F) promotes deformation by twinning whereas exposure to 760°C (1400°F) does not.  相似文献   

5.
Hot tensile tests after applied prior melting down of the specimens were carried out on mainly ledeburitic tool steels and their strength and ductility were determined in the temperature range between liquidus and 900°C. The test parameters and specimen microstructures were adapted to the conditions and structures prevailing in continuous casting and primary hot working of blooms. The metallurgical processes leading to the embrittlement of the material were examined by means of metallographic investigations. The temperature ranges of internal crack susceptibility and low ductility were evaluated.  相似文献   

6.
The causes of embrittlement in several plain carbon-manganese and niobium-treated steels between 800 and 1200 °C have been investigated. Tensile ductility was measured as a function of temperature and strain rate. Percent elongation and reduction in area were used to characterize the temperature dependence and severity of the ductility loss. The size, distribution, and composition of grain boundary precipitates were measured on extraction replicas. Grain boundary segregation was measured by AES on samples that were deformed at 900 °C before being fractured under ultra-high vacuum at room temperature. Segregation of impurity residual elements and grain boundary precipitation are the primary factors responsible for the observed ductility loss. The embrittlement results in a low ductility fracture which is largely intergranular through the austenite grain boundaries. Segregation of Cu, Sn, and Sb was found on the fracture surfaces of the embrittled samples. High temperature deformation was necessary to produce segregation as no segregation was detected in undeformed samples. Grain boundary precipitation, particularly AIN but also Nb (C,N), contributed to the embrittlement when there was a relatively fine distribution of precipitates along the austenite grain boundaries. The most severe ductility loss occurred when grain boundary precipitation combined with Cu, Sn, and Sb segregation. Formerly Graduate Student, Lehigh University  相似文献   

7.
The use of polycrystalline CuAlNi alloys for high temperature applications is restricted to very small shape changes due to their brittle nature. Additions of alloying elements such as manganese and boron have been introduced to improve the ductility of the material. The behaviour of these alloys has been studied in terms of the influence of these elements on the stability of the microstructure after high temperature annealing or after room and high temperature deformation. The results show that the martensitic structure produced by quenching the alloy from the β-temperature has a lower degree of order than that obtained after further annealing at 300°C for up to an hour. Also, the alloys containing higher boron concentrations present a lower degree of order in all cases. Similarly, the ductility has been much influenced by the boron content. The ductility is greater, in particular at high temperatures, in the alloys with lower concentration of boron.  相似文献   

8.
掺杂钼丝的组织与性能   总被引:6,自引:0,他引:6  
系统地研究了纯钼丝、高温钼丝和镧钼丝在不同温度下进行热处理后的组织与性能。结果表明,掺杂提高了丝材的室温强度和再结晶温度,改善了再结晶后的室温脆性,综合性能明显高于纯钼丝。  相似文献   

9.
Grain boundary embrittlement of the iron-base superalloy IN903A   总被引:2,自引:0,他引:2  
It is shown that a low coefficient of expansion, iron-base superalloy, IN903A, suffers severe tensile embrittlement following high temperature air exposure at 1000 °C. This embrittlement involves a transition to intergranular failure at low strains, with no reduction in yield strength, and is manifested in the room temperature to 800 °C range. In parallel with earlier observations on nickel-base superalloys, ductility is regained at 1000 °C. However, in contrast to these earlier results, air exposure enhances rather than hinders grain growth in the near surface regions, and, in addition, suppresses the occurrence of the jerky flow seen in vacuum-exposed material. Oxygen is demonstrated to be the damaging species, and it is show’n that boundaries are embrittled far ahead of any matrix internal oxidation. Small additions of boron are successful in eliminating the embrittlement, as they were in nickel-base alloys. The results of stress rupture tests are then reviewed, and it is concluded that the rapid failures which occur on air testing are a consequence of embrittled grain boundaries failing in tension, rather than the stress accelerated grain boundary oxidation mechanism previously proposed.  相似文献   

10.
The ductility of ZIRCALOY *-2 sheets containing 21-615 wt ppm hydrogen has been investigated at room temperature over a range of stress states from uniaxial to equibiaxial tension. Data based on locally determined fracture strains show a decrease in ductility with both increasing hydrogen content and increasing degree of biaxiality of the stress state. Metallographic and fractographic examinations indicate that the embrittlement is a consequence of void nucleation (due to hydride fracture), void growth, and void link-up. The influence of hydrogen content and stress state on each of the sequential stages of ductile fracture is determined. These results indicate that the primary cause for the influence of stress state on the hydrogen embrittlement of the ZIRCALOY sheet is that void link-up is initiated at a much lower critical void density in equibiaxial tension than in uniaxial tension. This appears to be a result of equibiaxial deformation enhancing (a) direct participation of previously unfractured hydrides in providing a fracture path linking up voids and (b) a localized shear instability process which is triggered by the nucleation of voids.  相似文献   

11.
The stress-rupture and tensile properties of a cast cobalt base superalloy, MM509, are compared after high temperature exposure in air and vacuum. A loss in tensile ductility after air exposure is observed over the entire temperature range from room temperature to 1000 °C with the effect being most severe at 400 ° to 600 °C. This appears to be related to grain boundary oxygen penetration and is compared and contrasted with similar observations in nickel base alloys. The cobalt base alloy has high intrinsic ductility at high temperatures and, even after air exposure, there is no loss in creep life associated with the embrittlement. It is argued that in this alloy the critical strain for fracture of embrittled grain boundaries is much higher than that for high strength nickel base superalloys.  相似文献   

12.
In order to develop a comprehensive understanding of the effect of hot charging temperature on the hot ductility of a Nb‐containing steel, direct hot charging process was simulated by using a Gleeble thermo stress/strain machine. Three kinds of thermal histories were introduced to assess the hot ductility of the steel during continuously cast, hot charging, and cold charging process by means of hot tensile test in relation to surface cracking of hot charging processed steel slabs. The ductility of the specimens charged at the temperature within the range of ferrite/austenite two‐phase region and charged at the temperature just below the Ar1 of the steel is largely reduced. These results can be ascribed to the retained ferrite films at the boundaries of austenite encouraging voiding at the boundaries and these voids gradually link up to give failure around 750°C, and the combination of inhogeneous austenite grain size and precipitations aggravating the ductility trough by encouraging grain boundary sliding at 950°C. The steel via the conventional cold charge process experienced a complete phase transformation from austenite to ferrite and pearlite structure during the cooling to the ambient temperature. This steel can be charged into a reheating furnace and rolled without experiencing hot embrittlement due to the recrystallization and the precipitates are trapped inside a newly formed grain of austenite. In comparison with the hot ductility results, the hot tensile strength is only slight influenced by the charging temperature.  相似文献   

13.
占炜  胡俊  徐国富  王存宇  曹文全  董瀚 《钢铁》2013,48(3):66-70
 研究了逆相变退火温度对0.1C5Mn钢连铸坯的组织结构和力学性能的影响规律,采用SEM进行组织结构的表征,利用XRD技术分析连铸坯退火后奥氏体含量,并测试了退火试样的力学拉伸性能。试验结果表明,连铸坯退火过程中发生奥氏体逆转变且在较低退火温度下有少量碳化物析出,随着退火温度升高,奥氏体含量先增加后减少,析出物逐渐溶解消失。提高退火温度可以显著提高试验钢的抗拉强度但却降低它的屈服强度,另外随退火温度升高,断后伸长率和强塑积先增高后降低。在625~650℃退火,可以获得20%~25%的伸长率。研究结果说明利用逆转变退火可以大幅度提高中锰钢铸坯的力学性能。  相似文献   

14.
Hydrogen embrittlement susceptibility, as measured from room temperature precharged tensile specimens, indicates that the type, extent, and morphology of carbide precipitation are all important in determining the degree and mode of degradation. At equivalent charging conditions, embrittlement is virtually eliminated by aging to produce fine scale clustering of Ti(C, N), even when concurrent with cementite precipitation. High temperature aging (> 500 °C) results in exclusive precipitation of the alloy carbide, but also in a total loss of ductility due to a fracture mode transition to intergranular. This is shown to be associated with metalloid (P, S) segregation to grain boundaries accompanying depletion of Ti in solution. Intermediate behavior is observed in microstructures produced by high temperature quenching or aging at temperatures (∼ 400 °C) where only cementite precipitation is observed.  相似文献   

15.
16.
含钒低合金钢铸坯高温延塑性研究   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟试验机测试了含钒低合金钢铸坯的高温延塑性,利用扫描电镜、金相显微镜对断口形貌及金相组织进行分析。低合金钢的第Ⅰ脆性温度区在Ts~1 370℃之间,第Ⅲ脆性温度区在915~710℃之间。第Ⅲ脆性区间由奥氏体低温域晶界滑移楔形裂纹造成的沿晶脆性断裂和奥氏体晶界先共析铁素体薄膜造成的沿晶韧性断裂两部分组成。钢中的V对钢的第Ⅲ脆性凹槽的影响比较大,脆化向低温区域延伸。  相似文献   

17.
The effect of coiling temperature on the annealing behaviour of copper‐alloyed interstitial free steel has been studied during batch and continuous annealing. The batch annealing kinetics undergoes a severe sluggishness in the so‐called industrial low temperature coiling condition, while retardation is less with high temperature coiling. The mechanism is believed to be the particle pinning effect exerted by peak‐aged or over‐aged copper precipitates. Room and high temperature coiled materials show similar strength and ductility after batch annealing. However, the texture development is different in the two cases, which leads to a variation in deep drawability. Copper precipitation has been observed to give rise to an unusual trend in strain hardening with the progress of batch annealing. The strength and formability parameters of the continuous annealed copper‐alloyed interstitial free steel do not depend on the coiling temperature due to dissolution of copper precipitates of the hot rolled material during continuous annealing. Irrespective of the coiling temperature continuous annealed copper‐alloyed interstitial free steels are as good as conventional interstitial free steels particularly in formability parameters.  相似文献   

18.
A new type of high strength, high toughness, martensitic steel, based on a newly proposed Quench and Partitioning (Q&P) process, is presented. This high strength martensitic grade is produced by the controlled low temperature partitioning of carbon from as‐quenched martensite laths to retained inter‐lath austenite under conditions where both low temperature transition carbide formation and cementite precipitation are suppressed. The contribution focuses on both the current understanding of the fundamental processes involved and includes a discussion of the technical feasibility of large‐scale industrial production of these steels as sheet products. The Q&P process, which is carried out on steels with a lean composition, should be implemented easily on some current industrial continuous annealing and galvanizing lines. In addition, martensitic Q&P sheet steel is characterized by very favourable combinations of strength, ductility and toughness, which are particularly relevant for high strength anti‐intrusion automotive parts.  相似文献   

19.
研究了将Cr、Mo、Mn、Ti、Ni、Si等合金元素分别加入当量成分的Fe3Al金属间化合物后对其室温塑性、800℃周期氧化性能、氧化物结构及Al元素由试样表面向内部的分布状态的影响.结果表明,只有Cr元素提高了DO3结构的Fe3Al金属间化合物合金在真空中的室温拉伸延伸率,其他元素都不同程度地降低了合金的塑性。Cr提高室温塑性的主要原因不是由于Cr改变了合金的表面氧化动力学或改变了表面氧化物结构及表面状态,进而降低了环境敏感性的缘故。  相似文献   

20.
In many low alloys as well as in plain carbon steels, segregation of trace element, especially phosphorus (P), sulfur (S), arsenic (As), etc. is really a great problem. Because, it induces brittleness in the steels and subsequently causes deterioration in mechanical properties. In this present work, commercial grade of pure iron with varying amount of phosphorus contents such as 0.001, 0.11 and 0.21 wt% were annealed at different temperatures and time periods to induce varying degrees of temper embrittlement. After annealing heat treatment, tensile and plane bending fatigue tests of these ferrous alloys were carried out at room temperature in the air. The tensile and fatigue fracture surfaces were observed under scanning electron microscope (SEM) to study various fracture features. It has been found that the addition of phosphorus in the pure iron increased the tensile strength, however, it decreased the ductility. The grain refining effects and increase in tensile strength due to additions of P were found to be very significant. However, with increase in annealing time at any temperature, the mechanical properties were found to deteriorate gradually and the fatigue fracture mode was also found to change from its transgranular cleavage type to intergranular type fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号