首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. H. Hansen 《风能》2003,6(2):179-195
Stall‐induced edgewise blade vibrations have occasionally been observed on three‐bladed wind turbines over the last decade. Experiments and numerical simulations have shown that these blade vibrations are related to certain vibration modes of the turbines. A recent experiment with a 600 kW turbine has shown that a backward whirling mode associated with edgewise blade vibrations is less aerodynamically damped than the corresponding forward whirling mode. In this article the mode shapes of the particular turbine are analysed, based on a simplified turbine model described in a multi‐blade formulation. It is shown that the vibrations of the blades for the backward and forward edgewise whirling modes are different, which can explain the measured difference in aerodynamic damping. The modal dynamics of the entire turbine is important for stability assessments; blade‐only analysis can be misleading. In some cases the modal dynamics may even be improved to avoid stall‐induced vibrations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Wind turbine resonant vibrations are investigated based on aeroelastic simulations both in frequency and time domain. The investigation focuses on three different aspects: the need of a precise modeling when a wind turbine is operating close to resonant conditions; the importance of estimating wind turbine loads also at low turbulence intensity wind conditions to identify the presence of resonances; and the wind turbine response because of external excitations. In the first analysis, three different wind turbine models are analysed with respect to the frequency and damping of the aeroelastic modes. Fatigue loads on the same models are then investigated with two different turbulence intensities to analyse the wind turbine response. In the second analysis, a wind turbine model is excited with an external force. This analysis helps in identifying the modes that might be excited, and therefore, the frequencies at which minimal excitation should be present during operations. The study shows that significant edgewise blade vibrations can occur on modern wind turbines even if the aeroelastic damping of the edgewise modes is positive. When operating close to resonant conditions, small differences in the modeling can have a large influence on the vibration level. The edgewise vibrations are less visible in high turbulent conditions. Using simulations with low‐level turbulence intensity will ease this identification and could avoid a redesign. Furthermore, depending on the external excitation, different aeroelastic modes can be excited. The investigation is performed using aeroelastic models corresponding to a 1.5 MW class wind turbine with slight variations in blade properties. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
M. H. Hansen 《风能》2007,10(6):551-577
This paper deals with the aeroelastic instabilities that have occurred and may still occur for modern commercial wind turbines: stall‐induced vibrations for stall‐turbines, and classical flutter for pitch‐regulated turbines. A review of previous works is combined with derivations of analytical stability limits for typical blade sections that show the fundamental mechanisms of these instabilities. The risk of stall‐induced vibrations is mainly related to blade airfoil characteristics, effective direction of blade vibrations and structural damping; whereas the blade tip speed, torsional blade stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research issues that represent unsolved aeroelastic instability problems for wind turbines. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
An aeroelastic model for wind turbine blades derived from the unsteady Navier‐Stokes equations and a mode shape–based structural dynamics model are presented. For turbulent flows, the system is closed with the Spalart‐Allmaras turbulence model. The computation times for the aerodynamic solution are significantly reduced using the harmonic balance method compared to a time‐accurate solution. This model is significantly more robust than standard aeroelastic codes that rely on blade element momentum theory to determine the aerodynamic forces. Comparisons with published results for the Caradonna‐Tung rotor in hover and the classical AGARD 445.6 flutter case are provided to validate the aerodynamic model and aeroelastic model, respectively. For wind turbines, flutter of the 1.5 MW WindPACT blade is considered. The results predict that the first flapwise and edgewise modes dominate flutter at the rotor speeds considered.  相似文献   

5.
Karl O. Merz 《风能》2015,18(6):955-977
A fast and effective frequency‐domain optimization method was developed for stall‐regulated blades. It was found that when using linearized dynamics, typical cost functions employing damage‐equivalent root bending moments are not suitable for stall‐regulated wind turbines: when the cost function is minimized, the edgewise damping can be low, and the flapwise damping can approach zero during an extreme operating gust. A new cost function is proposed that leads to nicely balanced stall behavior and damping over the entire operating windspeed range. The method was used to design the blades of two multi‐MW, stall‐regulated, offshore wind turbines, comparable with the NREL 5 MW and NTNU 10 MW pitch‐regulated turbines. It is shown that the optimal stall‐regulated blade has a unique aerodynamic profile that gives high flapwise and edgewise damping and a uniform mean power output above the rated windspeed. The blades are described in sufficient detail that they can be used in further aeroelastic analyses, to compare large stall‐regulated and pitch‐regulated turbines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
B. S. Kallesøe 《风能》2011,14(2):209-224
This paper deals with effects of geometric non‐linearities on the aeroelastic stability of a steady‐state deflected blade. Today, wind turbine blades are long and slender structures that can have a considerable steady‐state deflection which affects the dynamic behaviour of the blade. The flapwise blade deflection causes the edgewise blade motion to couple to torsional blade motion and thereby to the aerodynamics through the angle of attack. The analysis shows that in the worst case for this particular blade, the edgewise damping can be decreased by half. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The use of active controls has shown to be of substantial help in supporting the increasing size of wind turbines by reducing peak stresses and fatigue loads. In this respect, this paper proposes the use of intuitive frequency‐based control strategies for reducing loads in wind turbine blades equipped with multi‐input multi‐output (MIMO) active flow controllers. For that purpose, a loop‐shaping approach is considered for analysing the dynamic of actively controlled wind turbine blades. Preliminary aeroelastic simulations are carried out to validate the results. It is shown that the MIMO vibration control problem can effectively be decomposed into a number of decoupled single‐input single‐output control problems because of the strong correlation between the dominant aeroelastic blade dynamics and actuator deployments. As a result, it is demonstrated that classical single‐input single‐output control systems can perform as efficiently as MIMO controllers for damping the aeroelastic dynamics of wind turbine blades. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper proposes a new type of passive vibration control damper for controlling edgewise vibrations of wind turbine blades. The damper is a variant of the liquid column damper and is termed as a circular liquid column damper (CLCD). Rotating wind turbine blades generally experience a large centrifugal acceleration. This centrifugal acceleration makes the use of this kind of oscillatory liquid damper feasible with a small mass ratio to effectively suppress edgewise vibrations. A reduced 2‐DOF non‐linear model is used for tuning the CLCD attached to a rotating wind turbine blade, ignoring the coupling between the blade and the tower. The performance of the damper is evaluated under various rotational speeds of the rotor. A special case in which the rotational speed is so small that the gravity dominates the motion of the liquid is also investigated. Further, the legitimacy of the decoupled optimization is verified by incorporating the optimized damper into a more sophisticated 13‐DOF aeroelastic wind turbine model with due consideration to the coupled blade‐tower‐drivetrain vibrations of the wind turbine as well as a pitch controller. The numerical results from the illustrations on a 5 and a 10MW wind turbine machine indicate that the CLCD at an optimal tuning can effectively suppress the dynamic response of wind turbine blades. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The recent introduction of ever larger wind turbines poses new challenges with regard to understanding the mechanisms of unsteady flow–structure interaction. An important aspect of the problem is the aeroelastic stability of the wind turbine blades, especially in the case of combined flap/lead–lag vibrations in the stall regime. Given the limited experimental information available in this field, the use of CFD techniques and state‐of‐the‐art viscous flow solvers provides an invaluable alternative towards the identification of the underlying physics and the development and validation of sound engineering‐type aeroelastic models. Navier–Stokes‐based aeroelastic stability analysis of individual blade sections subjected to combined pitch/flap or flap/lead–lag motion has been attempted by the present consortium in the framework of the concluded VISCEL JOR3‐CT98‐0208 Joule III project. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
P.F. Skjoldan  M.H. Hansen 《风能》2013,16(3):401-415
Wind shear is an important contributor to fatigue loads on wind turbines. Because it causes an azimuthal variation in angle of attack, it can also affect aerodynamic damping. In this paper, a linearized model of a wind turbine, based on the non‐linear aeroelastic code BHawC, is used to investigate the effect of wind shear on the modal damping of the turbine. In isotropic conditions with a uniform wind field, the modal properties can be extracted from the system matrix transformed into the inertial frame using the Coleman transformation. In shear conditions, an implicit Floquet analysis, which reduces the computational burden associated with classical Floquet analysis, is used for modal analysis. The methods are applied to a 2.3 MW three‐bladed pitch‐regulated wind turbine showing a difference in damping between isotropic and extreme shear conditions at rated wind speed when the turbine is operating closest to stall. The first longitudinal tower mode decreases slightly in damping, whereas the first flapwise backward whirling and symmetric modes increase in damping. This change in damping is attributed to an interaction between the periodic blade mode shapes and the azimuth‐dependent local aerodynamic damping in the shear condition caused by a beginning separation of the flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Don W. Lobitz 《风能》2004,7(3):211-224
Classical aeroelastic flutter instability historically has not been a driving issue in wind turbine design. In fact, rarely has this issue even been addressed in the past. Commensurately, among the wind turbines that have been built, rarely has classical flutter ever been observed. However, with the advent of larger turbines fitted with relatively softer blades, classical flutter may become a more important design consideration. In addition, innovative blade designs involving the use of aeroelastic tailoring, wherein the blade twists as it bends under the action of aerodynamic loads to shed load resulting from wind turbulence, may increase the blade's proclivity for flutter. With these considerations in mind it is prudent to revisit aeroelastic stability issues for a MW‐sized blade with and without aeroelastic tailoring. Focusing on aeroelastic stability associated with the shed wake from an individual blade turning in still air, the frequency domain technique developed by Theodorsen for predicting classical flutter in fixed wing aircraft has been adapted for use with a rotor blade. Results indicate that the predicted flutter speed of a MW‐sized blade is slightly greater than twice the operational speed of the rotor. When a moderate amount of aeroelastic tailoring is added to the blade, a modest decrease (12%) in the flutter speed is predicted. By comparison, for a smaller rotor with relatively stiff blades the predicted flutter speed is approximately six times the operating speed. When frequently used approximations to Theodorsen's method are implemented, drastic underpredictions result, which, while conservative, may adversely impact blade design. These underpredictions are also evident when this MW‐sized blade is analysed using time domain methods. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

12.
Horizontal axis wind turbines operate under yawed conditions for a considerable period of time due to the power control mechanism or sudden changes in the wind direction. This in turn can alter the dynamic characteristics of a turbine blade because the flow over the rotor plane may trigger complicated induced velocity patterns. In this study, an aeroelastic analysis under yawed flow conditions is carried out to investigate the effects of yaw error on the blade behaviors and dynamic stability. A beam model including geometric nonlinearity coupled with unsteady aerodynamics based on a free-vortex wake method with the blade element theory is employed in the present study. The aerodynamic approach for a horizontal axis wind turbine blade under yawed flow conditions is verified through comparison with measurements. It is also shown that the present method gives slightly better results at high yaw angles than does the method previously published in the literature. The dynamic instabilities of a National Renewable Energy Laboratory 5 MW reference wind turbine have subsequently been investigated for various wind speeds and yaw angles. Observations are made that yaw effects induce considerable changes in airloads and blade structural behavior. Also, the aeroelastic damping values for this particular blade under yawed flow conditions can be reduced by up to approximately 33% in the worst case. Therefore, it is concluded that the impacts of yaw misalignments adversely influenced the dynamic aeroelastic stability of the horizontal axis wind turbine blade.  相似文献   

13.
为了研究预弯外形对风力机气弹稳定性的影响,以某2 MW低风速风电叶片为研究对象,采用外形参数化表达方法构造叶尖预弯量分别为3、4和5 m的叶片.基于SIMPACK软件建立并验证气-弹-控耦合的风力机整机模型,对配装不同预弯叶片的风力机进行仿真分析.结果显示,在湍流风况下,随着叶尖预弯量的增大,叶根载荷、叶尖附近截面的气...  相似文献   

14.
This contribution presents modal testing of a 2‐MW wind turbine on a 100‐m tubular tower with a 93‐m rotor developed by W2E Wind to Energy GmbH. This research is part of the DYNAWIND project of the University of Rostock and W2E. Beside classical modal analysis schemes, this contribution mainly focusses on the application of operational modal analysis techniques to a wind turbine. Specific problems are addressed, and hints for modal testing on wind turbines are given. Furthermore, an effective measurement setup is proposed for identification of the modal parameters of a wind turbine. The measurement campaign is divided in two parts. First, a measurement campaign using 8 sensor positions on a rotor blade was done while the rotor is lying on ground. Second, a detailed measurement campaign was done on the entire wind turbine with the rotor locked in Y position using 61 sensor positions on the tower, the mainframe, the gearbox, the generator, and the low‐voltage unit. While the rotor blade was tested by classical and operational modal analysis techniques, the entire wind turbine was tested by operational modal analysis techniques only. The mode shapes and eigenfrequencies of the wind turbine identified within the measurement campaigns are within the expected range of the design values of the wind turbine. But in contrast, the damping ratios differ strongly from those given in guidelines and literature. Furthermore, a strong influence of aerodynamic damping compared to structural damping is observed for the first tower mode even for a parked wind turbine.  相似文献   

15.
The significance of three types of design modifications in view of defining passive means to extend the stability bounds of modern wind turbines is assessed in this paper. The first concerns the use of optimized airfoil shapes on a fixed blade planform while the other two concern the increase of structural flexibility by either bringing closer the flap and lead‐lag mode frequencies or introducing a soft yaw connection. Such an exploration of the stability envelope aims at providing the necessary understanding of the mechanisms that control aeroelastic damping and therefore at identifying means for improving the stability behaviour of the lowest damped system modes. Stability calculations are performed in the context of linear eigenvalue analysis using a state‐of‐the‐art stability tool. The model accounts for the full wind turbine configuration and the eigenvalue problem is formulated with reference to the non‐rotating (ground‐fixed) frame of reference through the multi‐blade transformation of all the rotating degrees of freedom. Results are presented in reference to a commercial multi‐MW, pitch‐regulated, variable‐speed wind turbine. They indicate that the soft yaw concept offers more significant margins of improvement compared with the flap‐lag coincidence, while aerodynamic optimization could be a basis for improvement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Modern offshore wind turbines are susceptible to blade deformation because of their increased size and the recent trend of installing these turbines on floating platforms in deep sea. In this paper, an aeroelastic analysis tool for floating offshore wind turbines is presented by coupling a high‐fidelity computational fluid dynamics (CFD) solver with a general purpose multibody dynamics code, which is capable of modelling flexible bodies based on the nonlinear beam theory. With the tool developed, we demonstrated its applications to the NREL 5 MW offshore wind turbine with aeroelastic blades. The impacts of blade flexibility and platform‐induced surge motion on wind turbine aerodynamics and structural responses are studied and illustrated by the CFD results of the flow field, force, and wake structure. Results are compared with data obtained from the engineering tool FAST v8.  相似文献   

17.
This work compares continuous seismic ground motion recordings over several months on top of the foundation and in the near field of a wind turbine (WT) at Pfinztal, Germany, with numerical tower vibration simulations and simultaneous optical measurements. We are able to distinguish between the excitation of eigenfrequencies of the tower‐nacelle system and the influence of the blade rotation on seismic data by analyzing different wind and turbine conditions. We can allocate most of the major spectral peaks to either different bending modes of the tower, flapwise, and edgewise bending modes of the blades or multiples of the blade‐passing frequency after comparing seismic recordings with tower simulation models. These simulations of dynamic properties of the tower are based on linear modal analysis performed with finite beam elements. To validate our interpretations of the comparison of seismic recordings and simulations, we use optical measurements of a laser Doppler vibrometer at the tower of the turbine at a height of about 20 m. The calculated power spectrum of the tower vibrations confirms our interpretation of the seismic peaks regarding the tower bending modes. This work gives a new understanding of the source mechanisms of WT‐induced ground motions and their influence on seismic data by using an interdisciplinary approach. Thus, our results may be used for structural health purposes as well as the development of structural damping methods, which can also reduce ground motion emissions from WTs. Furthermore, it demonstrates how numerical simulations of wind turbines can be validated by using seismic recordings and laser Doppler vibrometry.  相似文献   

18.
This paper presents results out of investigations of the DEBRA‐25 wind turbine blades. Almost unique in the history of modern wind energy, these blades were in operation for 18 years next to a weather station and were investigated afterward. Therefore, the loads experienced in the operational life could be post‐processed accurately with the measured data of the weather station and the turbine. The blades are made of materials that are similar with today's wind turbines. Furthermore, intensive laboratory tests and free field tests have been carried out, and all load assumptions and data and results are still available today. The results include experimental investigations on the moisture content of the load‐carrying material, static and fatigue behavior of the material, the relaxation of the coupling joints, the natural frequencies of the blade and a full scale static blade test. It is shown that the structural performance of the DEBRA‐25 service blades is comparable with modern wind turbine blades. Although some damage was found by visual inspection, the service blade of the DEBRA‐25 showed excellent mechanical behavior in the full scale blade test. Only small changes of the edgewise eigenfrequencies were detected. The pre‐tensioning forces of the IKEA bolts, where the two blade parts are connected, were measured and were still adequate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Wind turbine controllers are commonly designed on the basis of low‐order linear models to capture the aeroelastic wind turbine response due to control actions and disturbances. This paper characterizes the aeroelastic wind turbine dynamics that influence the open‐loop frequency response from generator torque and collective pitch control actions of a modern non‐floating wind turbine based on a high‐order linear model. The model is a linearization of a geometrically non‐linear finite beam element model coupled with an unsteady blade element momentum model of aerodynamic forces including effects of shed vorticity and dynamic stall. The main findings are that the lowest collective flap modes have limited influence on the response from generator torque to generator speed, due to large aerodynamic damping. The transfer function from collective pitch to generator speed is affected by two non‐minimum phase zeros below the frequency of the first drivetrain mode. To correctly predict the non‐minimum phase zeros, it is essential to include lateral tower and blade flap degrees of freedom. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The present study investigated physical phenomena related to stall‐induced vibrations potentially existing on wind turbine blades at standstill conditions. The study considered two‐dimensional airfoil sections while it omitted three‐dimensional effects. In the study, a new engineering‐type computational model for the aeroelastic response of an elastically mounted airfoil was used to investigate the influence of temporal lag in the aerodynamic response on the aeroelastic stability in deep stall. The study indicated that even a relatively low lag significantly increases the damping of the model. A comparison between the results from a model with lag imposed on all force components with the results from a model with lag imposed exclusively on the lift showed only marginal difference between the damping in the two cases. A parameter study involving positions of the elastic hinge point and the center of gravity indicated that the stability is relatively independent of these parameters. Another parameter study involving spring constants showed that the stability of each mode is dependent only on the spring constant acting in the direction of the leading motion of the mode. An investigation of the influence of the added mass terms showed that only the pitch‐rate and flapwise‐acceleration terms have any influence on the stability. An investigation of three different profiles showed that the stability is heavily dependent on the aerodynamic characteristics of the profiles—mainly on the lift. It was also shown that only the edgewise mode is unstable in deep stall. Moreover, independent of the amount of temporal lag in the aerodynamic response of the model, the inflow‐angle region in the vicinity of 180° remains unstable in the edgewise mode. Therefore, this inflow‐angle region may create stability problems in real life. The other type of vibrations potentially present at standstill conditions is vortex‐induced, being outside the scope of the present study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号