首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Five new poly(ether imides) have been prepared on reaction with oxydiphthalic anhydride (ODA) with five different diamines: 1,4‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) benzene, 4,4′‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) benzene, 1,3‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) benzene, 2,6‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) pyridine, and 2,5‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) thiophene. Synthesized polymers showed good solubility in different organic solvents. The polyimide films have low water absorption of 0.3–0.7%, low dielectric constants of 2.82–3.19 at 1 MHz, and high optical transparency at 500 nm (>73%). These polyimides showed very high thermal stability with decomposition temperatures (5% weight loss) up to 531°C in air and good isothermal stability; only 0.4% weight loss occurred at 315°C after 5 h. Transparent thin films of these polyimides exhibited tensile strength up to 147 MPa, a modulus of elasticity up to 2.51 GPa and elongation at break up to 30% depending upon the repeating unit structure. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 821–832, 2004  相似文献   

2.
A novel dianhydride, trans‐1,2‐bis(3,4‐dicarboxyphenoxy)cyclohexane dianhydride (1,2‐CHDPA), was prepared through aromatic nucleophilic substitution reaction of 4‐nitrophthalonitrile with trans‐cyclohexane‐1,2‐diol followed by hydrolysis and dehydration. A series of polyimides (PIs) were synthesized from one‐step polycondensation of 1,2‐CHDPA with several aromatic diamines, such as 2,2′‐bis(trifluoromethyl)biphenyl‐4,4′‐diamine (TFDB), bis(4‐amino‐2‐trifluoromethylphenyl)ether (TFODA), 4,4′‐diaminodiphenyl ether (ODA), 1,4‐bis(4‐aminophenoxy)benzene (TPEQ), 4,4′‐(1,3‐phenylenedioxy)dianiline (TPER), 2,2′‐bis[4‐(3‐aminodiphenoxy)phenyl]sulfone (m‐BAPS), and 2,2′‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]sulfone (6F‐BAPS). The glass transition temperatures (Tgs) of the polymers were higher than 198°C, and the 5% weight loss temperatures (Td5%s) were in the range of 424–445°C in nitrogen and 415–430°C in air, respectively. All the PIs were endowed with high solubility in common organic solvents and could be cast into tough and flexible films, which exhibited good mechanical properties with tensile strengths of 76–105 MPa, elongations at break of 4.7–7.6%, and tensile moduli of 1.9–2.6 GPa. In particular, the PI films showed excellent optical transparency in the visible region with the cut‐off wavelengths of 369–375 nm owing to the introduction of trans‐1,2‐cyclohexane moiety into the main chain. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42317.  相似文献   

3.
A series of soluble polyimides derived from 3,3′,4,4′‐benzhydrol tetracarboxylic dianhydride (BHTDA) with various diamines such as 1,4‐bis(4‐aminophenoxy)‐2‐tert‐butylbenzene (BATB), 1,4‐bis(4‐aminophenoxy)‐2,5‐di‐tert‐butylbenzene (BADTB), and 2,2′‐dimethyl‐4,4′‐ bis(4‐aminophenoxy)biphenyl (DBAPB) were investigated for pervaporation separation of ethanol/water mixtures. Diamine structure effect on the pervaporation of 90 wt% aqueous ethanol solution through the BHTDA‐based polyimide membranes was studied. The separation factor ranked in the following order: BHTDA–DBAPB > BHTDA–BATB > BHTDA–BADTB. The increase in molecular volume for the substituted group in the polymer backbone increased the permeation rate. As the feed ethanol concentration increased, the permeation rate increased, while the water concentration in the permeate decreased for all polyimide membranes. The optimum pervaporation performance was obtained by the BHTDA–DBAPB membrane with a 90 wt% aqueous ethanol solution, giving a separation factor of 141, permeation rate of 255 g m?2 h?1 and 36 000 pervaporation separation index (PSI) value. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
Soluble copolysulfoneimides were synthesized by thermal two‐step method in solution of N‐methyl‐2‐pyrrolidone. The used aromatic diamines were bis[4‐(3‐aminophenoxy)phenyl]sulfone (BAPS‐m) and 3,3′‐diaminosulfone, and dianhydrides were pyromellitic dianhydride, 4,4′‐oxyphthalic anhydride, and 3,3′,4,4′‐diphenylsulfone tetracarboxylic dianhydride. The molar ratio of diamines was changed to reduce the content of BAPS‐m. The thermal and mechanical properties of polyimides were investigated. The polyimide ultrafiltration membrane with molecular weight cut‐off of 10 kDa could be successfully prepared by phase‐inversion method. Various solvent (water, alcohols, acetone, and hexane) fluxes were measured to investigate solvent‐resistance and membrane behavior during solvent permeation. The activation energy relationship between hexane flux and viscosity with temperature was also studied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1024–1030, 2002  相似文献   

5.
We report a new method for the preparation of asymmetric diamines using 4,4′‐oxydianiline (4,4′‐ODA) as the starting material. By controlling the equivalents of bromination agent, N‐bromosuccinimide, we were able to attach bromide and phenyl substituents at the 2‐ or 2,2′,6‐positions of 4,4′‐ODA. Thus, four new asymmetric aromatic diamines, 2‐bromo‐4,4′‐oxydianiline (6), 2,2′,6‐tribromo‐4,4′‐oxydianiline (7), 2‐phenyl‐4,4′‐oxydianiline (8) and 2,2′,6‐triphenyl‐4,4′‐oxydianiline (9), were synthesized by this method. Their structural asymmetry was confirmed using 1H NMR spectroscopy. Asymmetric polyimides (PI10–PI13) were prepared from these diamines and three different dianhydrides (pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride) in refluxing m‐cresol. The formed polyimides, except PI10a derived from 6 and PMDA, were all soluble in m‐cresol without premature precipitation during polymerization. These polyimides with inherent viscosity of 0.41–0.96 dL g?1, measured at a concentration of 0.5 g dL?1 in N‐methyl‐2‐pyrrolidone at 30 °C, can form tough and flexible films. Because of the structural asymmetry, they also exhibited enhanced solubility in organic solvents. Especially, polyimides PI11a and PI13a derived from 7 and 9 with rigid PMDA were soluble in various organic solvents at room temperature. The structural asymmetry of the prepared polyimides was also evidenced from 1H NMR spectroscopy. In the 1H NMR spectrum of PI11a, the protons of pyromellitic moiety appeared in an area ratio of 1:2:1 at three different chemical shifts, which were assigned to head‐to‐head, head‐to‐tail and tail‐to‐tail configurations, respectively. These polyimides also exhibited good thermal stability. Their glass transition temperatures ranged from 297 to 344 °C measured using thermal mechanical analysis. © 2013 Society of Chemical Industry  相似文献   

6.
Two series of isomers containing pyridine and sulfur unit aromatic diamine monomers, 4,4′‐bis(5‐amino‐2‐pyridinylsulfanyl)diphenyl sulfide ( 2a ), 4,4′‐bis(6‐amino‐3‐pyridinylsulfanyl)diphenyl sulfide ( 2b ) and 4,4′‐bis(5‐amino‐6‐methyl‐2‐pyridinylsulfanyl)diphenyl sulfide ( 2c ), 4,4′‐bis(5‐amino‐4‐methyl‐2‐pyridinylsulfanyl)diphenyl sulfide ( 2d ), were designed and synthesized. Aimed at clarifying the structure–property relationships of pyridine‐ and sulfur‐containing high refractive polymers, 2a was polymerized with various dianhydrides to prepare polyimides PI ‐1?PI ‐7 and 2b , 2c , 2d were reacted with 4,4′‐[p ‐thiobis(phenylenesulfanyl)]diphthalic anhydride to prepare polyimides PI ‐8?PI ‐10. The polyimides showed excellent optical properties with average refractive indices ranging from 1.7006 to 1.7620 and birefringence as low as 0.0056. Meanwhile, comparative studies on their properties including solubility, thermal and mechanical, and optical transparency properties were performed. Some property differences of the isomers caused by the sequence changes were found. © 2017 Society of Chemical Industry  相似文献   

7.
A series of highly soluble aromatic polyimides with excellent thermal properties were fabricated by traditional two‐step polycondensation reaction of dianhydride monomer 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride) or 4,4‐(hexafluoroisopropylidene)diphthalic anhydride with diamine monomer 1,3‐bis(4‐aminophenoxy)benzene or 1,3‐bis(3‐aminopropyl) tetramethyldisiloxane in N,N‐dimethylacetylamide solvent. Results revealed that copolyimide of PI‐4 containing trifluoromethyl and tetramethyldisiloxane possessed excellent solubility and remarkable thermal properties. PI‐4 could dissolve well in common low boiling point solvents such as THF of up to 80 mg/mL and acetone of 40 mg/mL. Moreover, the 10% weight loss temperature of the PI‐4 was 539°C and the Tg value of the PI‐4 was 311°C. PI‐4 might be easily cast into flexible and tough films applied in optoelectronic devices. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41713.  相似文献   

8.
To prepare a high‐performance epoxy, we synthesized three types of diamines {N,N′‐(4,4′‐diphenylether)‐bis(4‐aminophthalimide), 4,4′‐bis(p‐aminophenoxy)dibenzalphentaerythriol, and 2,2′‐bis[4‐(p‐aminobenzoyl)phenyl]propane} as epoxy curing agents with a two‐step reaction sequence. The structures of the synthesized diamines were confirmed with Fourier transform infrared and nuclear magnetic resonance spectroscopy. The curing kinetics and thermal stability of the cured epoxy resin with diglycidylether of bisphenol A were estimated with differential scanning calorimetry and thermogravimetric analysis under a nitrogen atmosphere. The kinetics parameters were determined with the Ozawa and Kissinger equations. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 279–284, 2001  相似文献   

9.
Four new poly(imide siloxane) copolymers were prepared by a one‐pot solution imidization method at a reaction temperature of 180°C in ortho‐dichlorobenzene as a solvent. The polymers were made through the reaction of o‐diphthaleic anhydride with four different diamines—4,4′‐bis(p‐aminophenoxy‐3,3″‐trifluoromethyl) terphenyl, 4,4′‐bis(3″‐trifluoromethyl‐p‐aminobiphenyl ether)biphenyl, 2,6‐bis(3′‐trifluoromethyl‐p‐aminobiphenyl ether)pyridine, and 2,5‐bis(3′‐trifluoromethyl‐p‐aminobiphenylether)thiopene—and aminopropyl‐terminated poly dimethylsiloxane as a comonomer. The polymers were named 1a , 1b , 1c , and 1d , respectively. The synthesized polymers showed good solubility in different organic solvents. The resulting polymers were well characterized with gel permeation chromatography, IR, and NMR techniques. 1H‐NMR indicated that the siloxane loading was about 36%, although 40 wt % was attempted. 29Si‐NMR confirmed that the low siloxane incorporation was due to a disproportionation reaction of the siloxane chain that resulted in a lowering of the siloxane block length. The films of these polymers showed low water absorption of 0.02% and a low dielectric constant of 2.38 at 1 MHz. These polyimides showed good thermal stability with decomposition temperatures (5% weight loss) up to 460°C in nitrogen. Transparent, thin films of these poly(imide siloxane)s exhibited tensile strengths up to 30 MPa and elongations at break up to 103%, which depended on the structure of the repeating unit. The rheological properties showed ease of processability for these polymers with no change in the melt viscosity with the temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
A novel bismaleimide, 2,2′‐dimethyl‐4,4′‐bis(4‐maleimidophenoxy)biphenyl, containing noncoplanar 2,2′‐dimethylbiphenylene and flexible ether units in the polymer backbone was synthesized from 2,2′‐dimethyl‐4,4′‐bis(4‐aminophenoxy)biphenyl with maleic anhydride. The bismaleimide was reacted with 11 diamines using m‐cresol as a solvent and glacial acetic acid as a catalyst to produce novel polyaspartimides. Polymers were identified by elemental analysis and infrared spectroscopy, and characterized by solubility test, X‐ray diffraction, and thermal analysis (differential scanning calorimetry and thermogravimetric analysis). The inherent viscosities of the polymers varied from 0.22 to 0.48 dL g−1 in concentration of 1.0 g dL−1 of N,N‐dimethylformamide. All polymers are soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethylsulfoxide, pyridine, m‐cresol, and tetrahydrofuran. The polymers, except PASI‐4, had moderate glass transition temperature in the range of 188°–226°C and good thermo‐oxidative stability, losing 10% mass in the range of 375°–426°C in air and 357°–415°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 279–286, 1999  相似文献   

11.
Aromatic polyetherimides were synthesized from a fluorine containing aromatic carboxylic acid dianhydride, 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]hexafluoropropane dianhydride (6F‐BABPA) and five typical aromatic diamines including 1,1‐bis(4‐aminophenyl)‐1‐phenyl‐2,2,2‐trifluoroethane (3F‐DAM) by two‐step procedures—amidation to polyamic acids (PAA), followed by thermal imidization of PAA. The chemical and physical properties of the newly prepared polyetherimides (PEI) were compared in terms of their chemical structures, inherent viscosities, mechanical, and thermal properties. All polyetherimides were well soluble in common organic solvents such as N‐methyl‐2‐pyrolidone (NMP), N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide (DMAc), pyridine, and methylene chloride. A PEI prepared from 6F‐BABPA/3F‐DAM was especially easily dissolved in NMP. The glass transition temperature (Tg) range of the obtained PEI was 209–257°C. The dielectric constants and refractive index were 2.8–3.2 and 1.61–1.56, respectively. The polyetherimide, 6F‐BABPA/BAPP, with a low fluorine content (11.4% fluorine content), has 0.99% water absorption, whereas the polyetherimide, 6F‐BABPA/4‐BDAP, having a high fluorine content (26.0% fluorine content) showed 0.35% of water absorption. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 249–257, 2000  相似文献   

12.
Two series of aromatic polyimides containing various linkage groups based on 2,7‐bis(4‐aminophenoxy)naphthalene or 3,3′‐dimethyl‐4,4′‐diaminodiphenylmethane and different aromatic dianhydrides, namely 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride), 4,4′‐(hexafluoroisopropylidene)bis(phthalic anhydride), 3,3′,4,4′ benzophenonetetracarboxylic dianhydride, 9,9‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]fluorene dianhydride and 4,4′‐(4,4′‐hexafluoroisopropylidenediphenoxy)bis(phthalic anhydride), were synthesized and compared with regard to their thermal, mechanical and gas permeation properties. All these polymers showed high thermal stability with initial decomposition temperature in the range 475–525 °C and glass transition temperature between 208 and 286 °C. Also, the polymer films presented good mechanical characteristics with tensile strength in the range 60–91 MPa and storage modulus in the range 1700–2375 MPa. The macromolecular chain packing induced by dianhydride and diamine segments was investigated by examining gas permeation through the polymer films. The relationships between chain mobility and interchain distance and the obtained values for gas permeability are discussed. © 2014 Society of Chemical Industry  相似文献   

13.
Random copolyimides with different proportions of a diamine component were prepared by polymerizing different compositions of diamines with various dianhydrides and imidized thermally to 260°C. The imidization percent of poly(amic acid) was characterized at various temperatures by infrared spectroscopy. The homopolyimide based on bis[4‐(3‐aminophenoxy)phenyl]sulfone and pyromellitic dianhydride was the only one soluble. By changing the compositions of bis[4‐(3‐aminophenoxy)phenyl]sulfone and other diamines with pyromellitic dianhydride in N‐methyl‐2‐pyrrolidone, soluble random copolyimides could be prepared. By random copolymerization, the thermal properties and viscosities of homopolyimide could be controlled. All the soluble polyimides prepared in this work were amorphous because of the lack of stereoregularity. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 272–277, 1999  相似文献   

14.
A series of polyamides and poly(amide‐imide)s was prepared by direct polycondensation of ether and nitrile group containing aromatic diamines with aromatic dicarboxylic acids and bis(carboxyphthalimide)s respectively in N‐methyl 2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. New diamines, such as 2,6‐bis(4‐aminophenoxy)benzonitrile and 2,6‐bis(3‐aminophenoxy)benzonitrile, were prepared from 2,6‐dichlorobenzonitrile with 4‐aminophenol and 3‐aminophenol, respectively, in NMP using potassium carbonate. Bis(carboxyphthalimide)s were prepared from the reaction of trimellitic anhydride with various aromatic diamines in N,N′‐dimethyl formamide. The inherent viscosities of the resulting polymers were in the range of 0.27 to 0.93 dl g?1 in NMP and the glass transition temperatures were between 175 and 298 °C. All polymers were soluble in dipolar aprotic solvents such as dimethylsulfoxide, dimethylacetamide and NMP. All polymers were stable up to 350 °C with a char yield of above 40 % at 900 °C in nitrogen atmosphere. All polymers were found to be amorphous except the polyamide derived from isophthalic acid and the poly(amide‐imide)s derived from diaminodiphenylether and diaminobenzophenone based bis(carboxyphthalimide)s. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Four series of aromatic polyimides (PIs V–VIII) composed of biphenyltetracarboxylic dianhydrides (BPDAs) and aromatic diamines bearing alkylene spacers were prepared by two methods. Most polymers could be readily prepared in a one‐step method for the combination of a‐BPDA with α,ω‐bis(3‐aminophenoxy)alkanes, a‐BPDA with α,ω‐bis(4‐aminophenoxy)alkanes, and s‐BPDA with α,ω‐bis(3‐aminophenoxy)alkanes. However, the polymerization of s‐BPDA with α,ω‐bis(4‐aminophenoxy)alkanes gave powders. On the other hand, all four monomer combinations afforded the desired polyamic acid solution in a two‐step method. These polymer solutions could be cast into tough and flexible films, which were characterized by their inherent viscosity, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical spectrometry measurements. The glass transition temperatures (Tgs) of the polymers were in the range of 110–240°C, but they were not clearly defined for PIs VIII and VI. The 5% weight loss temperatures were around 450°C for all prepared PIs. For PI VIII an “odd–even” behavior of the tensile properties of the films was detected, corresponding to the reported behavior of the melting temperatures. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2404–2413, 1999  相似文献   

16.
New polyimides with enhanced thermal stability and high solubility were synthesized in common organic solvents from a new dianhydride, 2,2′‐dibromo‐4,4′,5,5′‐benzophenone tetracarboxylic dianhydride (DBBTDA). DBBTDA was used as monomer to synthesize polyimides by using various aromatic diamines. The polymers were characterized by IR and NMR spectroscopy and elemental analysis. These polyimides had good inherent viscosities in N‐methyl‐2‐pyrrolidinone (NMP) and also high solubility and excellent thermo‐oxidative stability, with 5 % weight loss in the range 433 to 597 °C. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
A series of uncontrolled molecular weight homopolyimides and copolyimides based on 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA)/4,4′‐oxydianiline (4,4′‐ODA)/1,3‐bis(4‐aminophenoxy)benzene (TPER) were synthesized. All the polyimides displayed excellent thermal stability and mechanical properties, as evidenced by dynamic thermogravimetric analysis and tensile properties testing. A singular glass transition temperature (Tg) was found for each composite from either differential scanning calorimetry (DSC) or dynamic mechanical analysis (DMA), but the values determined from tan δ of DMA were much different from those determined from DSC and storage modulus (E′) of DMA. The Fox equation was used to estimate the random Tg values. Some composites exhibited re‐crystallization after quenching from the melt; upon heating, multi‐melting behavior was observed after isothermal crystallization at different temperatures. The equilibrium melting temperature was estimated using the Hoffman‐Weeks method. Additionally, DMA was conducted to obtain E′ and tan δ. Optical properties were strongly dependent on the monomer composition as evidenced by UV‐visible spectra. X‐ray diffraction was used to interpret the crystal structure. All the results indicated that composites with TPER composition ≥ 70% were dominated by the TPER/s‐BPDA polyimide phase, and ≤40% by the 4,4′‐ODA/s‐BPDA polyimide phase. When the ratio between the two diamines was close to 1:1, the properties of the copolyimides were very irregular, which means a complicated internal structure. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Two series of melt‐processable polyimides were prepared from 4,4′‐bis(3‐amino‐5‐trifluoromethylphenoxy)biphenyl (m‐6FBAB) and 4,4′‐bis(4‐amino‐5‐trifluoromethylphenoxy) biphenyl (p‐6FBAB) with various aromatic dianhydrides. The effects of the chemical structures of the polyimides on their properties, especially the melt processability and organic solubility, were investigated. The experimental results demonstrate that some of the fluorinated aromatic polyimides showed good melt processability at elevated temperatures (250–360°C) with relatively low melt viscosities and could be melt‐molded to produce strong and tough polyimide sheets. Meanwhile, the polyimides showed excellent organic solubility in both polar aprotic solvents and common solvents to give stable polyimide solutions with high polymer concentrations and relatively low viscosities. Thus, we prepared high‐quality polyimide films by casting the polyimide solutions on glass plates followed by baking at relatively low temperatures. The polyimides derived from m‐6FBAB showed better melt processability and solubility than the p‐6FBAB based polymers. The melt‐processable polyimides showed a good combination of thermal stability and mechanical properties, with decomposition temperatures of 547–597°C, glass‐transition temperatures in the range 205–264°C, tensile strengths of 81.3–104.9 MPa, and elongations at break as high as 19.6%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
A series of fluoropoly(ether‐imide) (6F‐PEI), and [6F‐PEI/montmorillonite (MMT) clay) nanocomposites films were made by thermal curing of respective formulations containing fluoropoly(ether‐amic acid) (6F‐PEAA), synthesized from 2,2′‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 4,4′‐bis(4‐aminophenoxy)diphenyl sulfone (p‐SED), and increasing concentration of p‐SED treated montmorillonite clay (modified MMT clay) at temperature from RT to 350 °C. These films showed excellent solvent resistance as well as very good thermal stability, and increased glass transition (Tg) values with increasing % clay. In addition, these trifluoromethyl groups‐containing nanocomposites films showed sharp lowering of coefficient of thermal expansion (CTE) by 22%. Furthermore, they exhibited increased long‐term thermo‐oxidative stability (TOS), with % weight retention in the range of 86 to 92% in isothermal heating at 300 °C for 300 h in air, reduced water absorption at 100 RH at 50 °C in the range of 0.5 to 1.15%. These data are still much lower than those of neat ULTEM® 1000 and Kapton® H film. The modulus of elasticity is on an average 38% higher for the nanocomposite films relative to neat fluoropoly(ether‐imide) (6FDA + p‐SED), and above non‐fluorinated polyimide films. The surface energy measurement by One‐Liquid and Two‐Liquid method showed a comparable trend of decreasing contact angle. For the nanocomposite films having 15% hydrophobic clay, the contact angle decreased by 21 and 20% for DI‐water and formamide, respectively. The surface energy increase was in the range of 8.21–8.54 mJ/m2.

  相似文献   


20.
Three novel aromatic phosphorylated diamines, i.e., bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl} pyromellitamic acid (AP), 4,4′‐oxo bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl}phthalamic acid (AB) and 4,4′‐hexafluoroisopropylidene‐bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl}phthalamic acid (AF) were synthesized and characterized. These amines were prepared by solution condensation reaction of bis(3‐aminophenyl)methyl phosphine oxide (BAP) with 1,2,4,5‐benzenetetracarboxylic acid anhydride (P)/3,3′,4,4′‐benzophenonetetracarboxylic acid dianhydride (B)/4,4′‐(hexafluoroisopropylidene)diphthalic acid anhydride (F), respectively. The structural characterization of amines was done by elemental analysis, DSC, TGA, 1H‐NMR, 13C‐NMR and FTIR. Amine equivalent weight was determined by the acetylation method. Curing of DGEBA in the presence of phosphorylated amines was studied by DSC and curing exotherm was in the temperature range of 195–267°C, whereas with conventional amine 4,4′‐diamino diphenyl sulphone (D) a broad exotherm in temperature range of 180–310°C was observed. Curing of DGEBA with a mixture of phosphorylated amines and D, resulted in a decrease in characteristic curing temperatures. The effect of phosphorus content on the char residue and thermal stability of epoxy resin cured isothermally in the presence of these amines was evaluated in nitrogen atmosphere. Char residue increased significantly with an increase in the phosphorus content of epoxy network. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2235–2242, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号