首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phenolics have recently been of great concern because of the extreme toxicity and persistency in the environment. Laboratory investigations of the potential use of Fe(III)/Cr(III) hydroxide as an adsorbent for the removal of bisphenol A and 2-aminophenol from aqueous solution were conducted. The operating variables studied are agitation time, initial concentration, adsorbent dose, pH and temperature. Equilibrium data follow Langmuir, Freundlich and Dubinin–Radushkevich isotherms. The Langmuir adsorption capacity of untreated and pretreated adsorbent was found to be 3.47 and 3.67 mg g−1, respectively, for bisphenol A; and 2.94 and 6.03 mg g−1 for 2-aminophenol. Adsorption was analyzed using first order, second order and Elovich kinetic models and the data were found to follow second order and Elovich kinetic models for the adsorption of bisphenol A by untreated adsorbent and first order and Elovich kinetic models for the adsorption of 2-aminophenol by untreated adsorbent. Thermodynamic parameters such as ΔG 0, ΔH 0 and ΔS 0 for the adsorption were evaluated.  相似文献   

3.
Adsorption gels for fluoride ion were prepared from orange waste by saponification followed by metal loading. The pectin compounds contained in orange waste creates ligand exchange sites once it is loaded with multi-valent metal ions such as Al3+, La3+, Ce3+, Ti4+, Sn4+, and V4+ to be used for fluoride removal from aqueous solution. The optimum pH for fluoride removal depends on the type of loaded metal ions. The isotherm experiments showed the Langmuir type monolayer adsorption. Among all kinds of metal loaded gels tested, Al loaded gel appeared to exhibit the most favorable adsorption behavior. The adsorption kinetics of fluoride on loaded gel demonstrated fast adsorption process. The presence of NO3, Cl and Na+ ions has negligible effect on fluoride removal whereas SO42− and HCO3 retarded the fluoride removal capacity in some extent. Fluoride removal at different adsorbent doses showed that fluoride concentration can be successfully lowered down to the acceptable level of environmental standard. The fluoride adsorption mechanism was interpreted in terms of ligand exchange mechanism. The complete elution of adsorbed fluoride from the gel was successfully achieved using NaOH solution.  相似文献   

4.
Removal of As(V) and As(III) by reclaimed iron-oxide coated sands   总被引:1,自引:1,他引:0  
This paper aims at the feasibility of arsenate and arsenite removal by reclaimed iron-oxide coated sands (IOCS). Batch experiments were performed to examine the adsorption isotherm and removal performance of arsenic systems by using the IOCS. The results show that the pH(zpc) of IOCS was about 7.0 +/- 0.4, favoring the adsorption of As(V) of anion form onto the IOCS surface. As the adsorbent dosage and initial arsenic concentration were fixed, both the As(V) and As(III) removals decrease with increasing initial solution pH. Under the same initial solution pH and adsorbent dosage, the removal efficiencies of total arsenic (As(V) and As(III)) were in the order as follows: As(V)>As(V)+As(III)>As(III). Moreover, adsorption isotherms of As(V) and As(III) fit the Langmuir model satisfactorily for the four different initial pH conditions as well as for the studied range of initial arsenic concentrations. It is concluded that the reclaimed IOCS can be considered as a feasible and economical adsorbent for arsenic removal.  相似文献   

5.
Adsorptive removal of water poisons such as Pb(II), Cu(II), Mn(II), Hg(II), CN(-), microbes, nerve and blister agents (concentration range from 100 to 1000 mg/L) were studied by using adsorbents such as active carbon, impregnated carbon and bentonite loaded fabric strip. Removal of water poisons (99.5%) could be achieved with an optimum stirring time of 5-15 min and weight of adsorbent of 0.8-8.0 g/100mL contaminated water, respectively. However, 85% bentonite loading was found to be most effective for Pb(II) removal. Effect of contaminants concentration was also studied.  相似文献   

6.
Adsorptive removal of methylene blue by tea waste   总被引:3,自引:0,他引:3  
The potentiality of tea waste for the adsorptive removal of methylene blue, a cationic dye, from aqueous solution was studied. Batch kinetics and isotherm studies were carried out under varying experimental conditions of contact time, initial methylene blue concentration, adsorbent dosage and pH. The nature of the possible adsorbent and methylene blue interactions was examined by the FTIR technique. The pH(pzc) of the adsorbent was estimated by titration method and a value of 4.3+/-0.2 was obtained. An adsorption-desorption study was carried out resulting the mechanism of adsorption was reversible and ion-exchange. Adsorption equilibrium of tea waste reached within 5h for methylene blue concentrations of 20-50mg/L. The sorption was analyzed using pseudo-first-order and pseudo-second order kinetic models and the sorption kinetics was found to follow a pseudo-second order kinetic model. The extent of the dye removal increased with increasing initial dye concentration. The equilibrium data in aqueous solutions were well represented by the Langmuir isotherm model. The adsorption capacity of methylene blue onto tea waste was found to be as high as 85.16mg/g, which is several folds higher than the adsorption capacity of a number of recently studied in the literature potential adsorbents. Tea waste appears as a very prospective adsorbent for the removal of methylene blue from aqueous solution.  相似文献   

7.
A new adsorbent was developed from waste ash resulting from municipal solid waste and coal co-combustion power plant. The ash was firstly subjected to hydrothermal treatment for zeolite synthesis, and then modified with iron(II) ions by agitation (ISZ) or ultrasonic (UISZ) treatment. The effect of operating factors such as pH, contact time, initial As(V) concentration and adsorbent dosage was investigated and the optimum operating conditions were established. The adsorption capacity for As(V) onto UISZ and ISZ were 13.04 and 5.37 mg g(-1), respectively. The adsorption isotherm data could be well described by Langmuir isotherm model. The optimum initial pH values for As(V) removal were 2.5 and 2.5-10.0 by ISZ and UISZ, respectively. The results indicated that ultrasound treatment scattered the particles of the adsorbent uniformly, which was in favor of impregnating iron ions into pores. Leaching of hazardous elements from the used adsorbents was very low. Accordingly, it is believed that the adsorbents developed in this study are environmentally acceptable and industrially applicable for utilization in arsenic-containing wastewater treatment.  相似文献   

8.
The demand for effective and inexpensive adsorbents is to increase in response to the widespread recognition of the deleterious health effects of arsenic exposure through drinking water. A novel adsorbent, aluminum-loaded Shirasu-zeolite P1 (Al-SZP1), was prepared and employed for the adsorption and removal of arsenic(V) (As(V)) ion from aqueous system. The process of adsorption follows first-order kinetics and the adsorption behavior is fitted with a Freundlich isotherm. The adsorption of As(V) is slightly dependent on the initial pH over a wide range (3-10). Al-SZP1 was found with a high As(V) adsorption ability, equivalent to that of activated alumina, and seems to be especially suitable for removal of As(V) in low concentration. The addition of arsenite, chloride, nitrate, sulfate, chromate, and acetate ions hardly affected the As(V) adsorption, whereas the coexisting phosphate greatly interfered with the adsorption. The adsorption mechanism is supposed as a ligand-exchange process between As(V) ions and the hydroxide groups present on the surface of Al-SZP1. The adsorbed As(V) ions were desorbed effectively by a 40 mM NaOH solution. Continuous operation was demonstrated in a column packed with Al-SZP1. The feasibility of this technique to practical utilization was also assessed by adsorption/desorption multiple cycles with in situ desorption/regeneration operation.  相似文献   

9.
In this study, organobentonites were prepared by modification of bentonite with various cationic surfactants, and were used to remove As(V) and As(III) from aqueous solution. The results showed that the adsorption capacities of bentonite modified with octadecyl benzyl dimethyl ammonium (SMB3) were 0.288 mg/g for As(V) and 0.102 mg/g for As(III), which were much higher compared to 0.043 and 0.036 mg/g of un-modified bentonite (UB). The adsorption kinetics were fitted well with the pseudo-second-order model with rate constants of 46.7 × 10−3 g/mg h for As(V) and 3.1 × 10−3 g/mg h for As(III), respectively. The maximum adsorption capacity of As(V) derived from the Langmuir equation reached as high as 1.48 mg/g, while the maximum adsorption capacity of As(III) was 0.82 mg/g. The adsorption of As(V) and As(III) was strongly dependent on solution pH. Addition of anions did not impact on As(III) adsorption, while they clearly suppressed adsorption of As(V). In addition, this study also showed that desorbed rates were 74.61% for As(V) and 30.32% for As(III), respectively, after regeneration of SMB3 in 0.1 M HCl solution. Furthermore, in order to interpret the proposed absorption mechanism, both SMB3 and UB were extensively characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses.  相似文献   

10.
The present work provides a method for removal of the arsenic (III) from water. An ion-exchanger hybrid material zirconium (IV) oxide-ethanolamine (ZrO-EA) is synthesized and characterized which is subsequently used for the removal of selective arsenic (III) from water containing 10,50,100 mg/L of arsenic (III) solution. The probable practical application for arsenic removal from water by this material has also been studied. The various parameters affecting the removal process like initial concentration of As (III), adsorbent dose, contact time, temperature, ionic strength, and pH are investigated. From the data of results, it is indicated that, the adsorbent dose of 0.7 mg/L, contact time 50 min after which the adsorption process comes to equilibrium, temperature (25 ± 2), solution pH (5-7), which are the optimum conditions for adsorption. The typical adsorption isotherms are calculated to know the suitability of the process. The column studies showed 98% recovery of arsenic from water especially at low concentration of arsenic in water samples.  相似文献   

11.
This study evaluated the feasibility of using a solid waste from the leather industry as an adsorbent for removal of Cr(VI) and As(V) from aqueous media. The adsorbent material was characterized by chemical analyses, infrared spectroscopy, and scanning electronic microscopy (SEM) prior to reaction in order to assess its surface properties. Langmuir and Freundlich equations were used for analyzing the experimental data, which showed a better fit to the Langmuir model, thus suggesting a monolayer adsorption process in the surface of the adsorbent. The high amounts of Cr(VI)-133 mg g(-1) and As(V)-26 mg g(-1) adsorbed demonstrates the great potential for using this solid waste from the leather industry as a low-cost alternative to the traditionally used adsorbent materials.  相似文献   

12.
An iron terephthalate (MOF-235), one of the metal-organic frameworks (MOFs), has been used for the removal of harmful dyes (anionic dye methyl orange (MO) and cationic dye methylene blue (MB)) from contaminated water via adsorption. The adsorption capacities of MOF-235 are much higher than those of an activated carbon. The performance of MOF-235 having high adsorption capacity is remarkable because the MOF-235 does not adsorb nitrogen at liquid nitrogen temperature. Based on this study, MOFs, even if they do not adsorb gases, can be suggested as potential adsorbents to remove harmful materials in the liquid phase. Adsorption of MO and MB at various temperatures shows that the adsorption is a spontaneous and endothermic process and that the entropy increases (the driving force of the adsorption) with adsorption of MO and MB.  相似文献   

13.
研究了一种快速、灵敏的同时测定水中的As(Ⅲ)和As(V)的荧光新方法。在pH=6.5~7.5的缓冲介质中,利用2’,7’-二氯荧光素(DCF)作为荧光试剂,激发波长λex=510nm,发射波长λem=528nm下,As(Ⅲ)和DCF竞争碘,引起荧光强度的增强,从而测定痕量As(Ⅲ)。同时利用L一半胱氨酸还原剂将水中的As(V)还原成As(Ⅲ),从而测定As(Ⅲ)和As(v)的总量,差减间接测定As(V)。As(Ⅲ)浓度在4~180ng/mL范围内,相对荧光强度差值与As(Ⅲ)浓度呈线性关系,线性方程△F=7.82C+0.76,相关系数为o.9991,本法快速、简便、灵敏度高,已用于检测自来水和池塘水中痕量的As(Ⅲ)和As(V),回收率在96%~105%,结果令人满意。  相似文献   

14.
Electrical conductivity measurements were carried out for some Schiff bases derived from 2-hydroxy-1-naphthaldehyde with o-, m- and p-phenylenediamines and their metal complexes with some tri- and tetravalent ions. It has been concluded that the complexes have slight semiconducting properties. The conductivity and the activation energy were found to depend on the molecular structure of the complex as well as the ionic potential of the metal ion. The current-voltage dependence was studied for some complexes which indicated an ohmic conduction.  相似文献   

15.
Zinc oxide (ZnO) micro-tubes via self-assembly of nanoparticles were synthesized by a simple precipitation process. Removal of As(III) (arsenite) from water by ZnO micro-tubes through adsorption was investigated with both lab-prepared and natural water samples. The result showed that these self-assembled ZnO micro-tubes are effective to remove As(III) from both lab-prepared and natural water samples at near neutral pH environment. These ZnO micro-tubes have a high adsorption capability on As(III) at low As(III) concentration. When the equilibrium As(III) concentration was around 0.1 mg/L, the amount of As(III) adsorbed at equilibrium was over 10 mg/g. At high equilibrium concentration, the adsorption capacity of these ZnO micro-tubes on As(III) reached over 39.4 mg/g. These ZnO micro-tubes could provide a simple single-step treatment option to treat arsenic-contaminated natural water, which requires no pre-treatment or post-treatment pH adjustment for current industrial practice.  相似文献   

16.
This study examine the feasibility of As(III) removal from aqueous environment by an adsorbent, modified calcined bauxite (MCB) in a continuous flow fixed bed system. MCB exhibited excellent adsorption capacity of 520.2 mg/L (0.39 mg/g) with an adsorption rate constant 0.7658 L/mgh for an influent As(III) concentration of 1mg/L. In a 2 cm diameter continuous flow fixed MCB bed, a depth of only 1.765 cm was found necessary to produce effluent As(III) concentration of 0.01 mg/L, from an influent of 1 mg/L at a flow rate of 8 mL/min. Also, bed heights of 10, 20, and 30 cm could treat 427.85, 473.88 and 489.17 bed volumes of water, respectively, to breakthrough. A reduction in adsorption capacity of MCB was observed with increase in flow rates. The theoretical service times evaluated from bed depth service time (BDST) approach for different flow rates and influent As(III) concentrations had shown good correlation with the corresponding experimental values. The theoretical breakthrough curve developed from constantly mixed batch reactor (CMBR) isotherm data also correlated well with experimental breakthrough curve.  相似文献   

17.
The removal of Cr(VI), Pb(II), Hg(II) and Cu(II), by treated sawdust has been found to be concentration, pH, contact time, adsorbent dose and temperature dependent. The adsorption parameters were determined using both Langmuir and Freundlich isotherm models. Adsorption capacity for treated sawdust, i.e. Cr(VI) (111.61 mg/g), Pb(II) (52.38 mg/g), Hg(II) (20.62 mg/g), and Cu(II) (5.64 mg/g), respectively. Surface complexation and ion exchange are the major removal mechanisms involved. The adsorption isotherm studies clearly indicated that the adsorptive behaviour of metal ions on treated sawdust satisfies not only the Langmuir assumptions but also the Freundlich assumptions. The applicability of Lagergren kinetic model has also been investigated. The adsorption follows first-order kinetics. Thermodynamic constant (kad), standard free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated for predicting the nature of adsorption. The percentage adsorption increases with pH to attain a maximum at pH 6 and thereafter it decreases with further increase in pH. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed.  相似文献   

18.
The synthetic bimetal iron(III)–titanium(IV) oxide (NHITO) used was characterized as hydrous and nanostructured mixed oxide, respectively, by the Föurier transform infra red (FTIR), X-ray diffraction (XRD) pattern and the transmission electron microscopic (TEM) image analyses. Removal of As(III) and As(V) using the NHITO was studied at pH 7.0 (±0.1) with variation of contact time, solute concentration and temperature. The kinetic sorption data, in general, for As(III) described the pseudo-first order while that for As(V) described the pseudo-second order equation. The Langmuir isotherm described the equilibrium data (303 (±1.6) K) of fit was well with the Langmuir model. The Langmuir capacity (qm, mg g?1) value of the material is 85.0 (±4.0) and 14.0 (±0.5), respectively, for the reduced and oxidized species. The sorption reactions on NHITO were found to be endothermic and spontaneous, and took place with increasing entropy. The energy (kJ mol?1) of sorption for As(III) and As(V) estimated, respectively, is 9.09 (±0.01) and 13.51 (±0.04). The sorption percentage reduction of As(V) was significant while that of As(III) was insignificant in presence of phosphate and sulfate. The fixed bed NHITO column (5.1 cm × 1.0 cm) sorption tests gave 3.0, 0.7 and 4.5 L treated water (As content  0.01 mg L?1) from separate As(III) and As(V) spiked (0.35 ± 0.02 mg L?1) natural water samples and from high arsenic (0.11 ± 0.01 mg L?1) ground water, respectively when inflow rate was (0.06 L h?1).  相似文献   

19.
The objective of the present study is cost and benefit analysis of biological and chemical removal of hexavalent chromium [Cr(VI)] ions. Cost and benefit analysis were done with refer to two separate studies on removal of Cr(VI), one of heavy metals with a crucial role concerning increase in environmental pollution and disturbance of ecological balance, through biological adsorption and chemical ion-exchange. Methods of biological and chemical removal were compared with regard to their cost and percentage in chrome removal. According to the result of the comparison, cost per unit in chemical removal was calculated 0.24 euros and the ratio of chrome removal was 99.68%, whereas those of biological removal were 0.14 and 59.3% euros. Therefore, it was seen that cost per unit in chemical removal and chrome removal ratio were higher than those of biological removal method. In the current study where chrome removal is seen as immeasurable benefit in terms of human health and the environment, percentages of chrome removal were taken as measurable benefit and cost per unit of the chemicals as measurable cost.  相似文献   

20.
The sorptive removal of copper ions from aqueous solutions using zeolite NaX has been studied by a batch technique. The influences of solute concentration, temperature and particle size on the sorption process were examined. Several kinetic models were used to test the experimental rate data and to examine the controlling mechanism of the sorption process. Lagergren pseudo-first order, the pseudo-second-order (Ho) and Ritchie second-order models were analyzed using nonlinear regression technique while Weber–Morris model was analyzed using linear least squares method.The obtained results indicated that synthetic zeolite NaX could be used as an efficient material for the sorption of copper ions.A kinetic study has shown that the best fit is achieved when the Ritchie model was applied and that sorption did not involve film or intraparticle diffusion, i.e., they were not the rate controlling steps. The activation energy was found to be 12 kJ/mol in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号