首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
杨燕 《铸造技术》2014,(2):374-377
基于Von Mises屈服准则和线性等向性硬化准则,采用相关的弹塑性本构方程建立了TIG焊接不锈钢316L动态模型,研究了不同焊接热源模型对焊接过程中温度和残余应力分布的影响规律。结果表明,双椭球模型中的等温线更倾向于长条形,沿焊缝方向温度梯度较小;3D锥形高斯热源的等温线相对更圆,沿焊缝方向温度梯度更大;两种热源模型对横向残余应力和纵向残余应力的分布规律影响不大。  相似文献   

2.
在超薄金属板焊接过程中,残余应力及变形对产品质量有重要影响.文中研究了316不锈钢超薄板(厚度为70 μm)脉冲激光焊接过程的残余应力和焊接变形.采用热-弹-塑性有限元法和半椭球移动热源模型,考虑模型的几何和材料非线性因素,采用顺序耦合的方法对超薄板结构的温度场、应力-应变场进行模拟.采用光纤激光器对70 μm的316不锈钢板进行焊接,用红外测温仪对特征点热循环进行测量,用激光位移传感器测量了焊接变形,用X射线衍射应力测试仪测试了残余应力.结果表明,温度场、残余应力、变形的模拟计算结果与试验结果吻合.  相似文献   

3.
为建立能准确描述316L不锈钢流动特性的本构模型并合理制定其热成形工艺参数,采用圆柱试样在Gleeble-3500热模拟试验机上对316L奥氏体不锈钢进行等温压缩变形试验,研究316L不锈钢在变形温度为900℃~1 100℃、应变速率为0.01s-1~2s-1条件下的流变行为,建立其热变形本构方程。结果表明,变形温度和应变速率对流变应力有明显影响,流变应力随变形温度升高而降低,随应变速率的增加而升高。建立了材料常数α,n,lnA,及应变激活能Q与应变之间的非线性关系;316L不锈钢的热变形行为可用包含Arrhenius项考虑应变、应变速率及温度影响的本构方程描述。通过相关系数r、平均相对误差(AARE)对本构方程的准确性进行分析,结果表明,该方程可以准确预测316L不锈钢的高温流变行为。  相似文献   

4.
对6 mm厚的316L奥氏体不锈钢板进行TIG焊试验,采用盲孔法测量焊缝附近的残余应力,并采用超声冲击处理焊接接头,观察超声冲击前后焊接接头的组织形貌。使用Abaqus有限元软件,分析了316L不锈钢的焊接残余应力分布,并与残余应力测试结果进行对比,以验证模拟结果的准确性。结果表明,焊缝组织由奥氏体与δ铁素体组成,铁素体主要以蠕虫状分布于枝晶主轴上。超声冲击处理前,熔合线清晰可见,靠近熔合线的热影响区晶粒粗大,晶粒内部有滑移线,该部位在焊接过程中发生了塑性变形。超声冲击处理后,熔合线变得模糊,接头的残余应力大幅降低。接头的横向残余应力以拉应力为主,最大应力在焊缝熔合线处;最大纵向残余拉应力出现在焊缝及其热影响区附近。横向残余应力的模拟结果与盲孔法测试结果较为吻合,其与测试结果的偏差低于20%。  相似文献   

5.
对Q345碳钢/316不锈钢复合板进行焊接,并对焊接接头进行了不同工艺的热处理;通过组织观察、晶间腐蚀试验和应力腐蚀试验研究了热处理工艺对316L不锈钢焊缝组织和耐蚀性的影响。结果表明:316L不锈钢焊缝组织均为奥氏体+条状铁素体;随热处理次数增加,奥氏体晶界变宽,二次热处理后在316L不锈钢焊缝奥氏体晶界处有明显Cr23C6析出,并形成了贫铬区,容易发生晶间腐蚀和应力腐蚀,降低了316L不锈钢焊接接头的耐蚀性。  相似文献   

6.
为了准确评价奥氏体不锈钢的焊接残余应力,采用X射线衍射法进行应力测试,并通过对等强度梁应力的X射线测试,得出316L奥氏体不锈钢测试的最优参数。使用该测试参数对两种约束条件下的奥氏体不锈钢焊接接头残余应力进行测试。结果表明:使用X射线衍射法测量奥氏体不锈钢残余应力,应以(311)晶面为衍射晶面,且Mn靶的测试效果优于Cr靶。两种不同约束条件下纵向残余应力沿横向和纵向的分布情况相同,但预置反变形的纵向拉、压应力值均大于背板约束的纵向拉、压应力。横向残余应力沿横向随距焊缝距离的增加变化趋势有所不同。随距焊缝的距离增加,反变形条件下横向残余应力逐渐恢复至初始状态,而背板约束时仍保留一定的残余拉应力。横向残余应力沿纵向的分布趋势相同。  相似文献   

7.
利用有限元法以及生死单元技术对CF62与316L的异种钢多道焊焊接残余应力开展了模拟分析。结果表明,焊态残余应力在焊缝和热影响区具有较高的应力水平,且热影响区的残余应力水平略大于焊缝区。远离焊缝热影响区,应力逐渐降低。焊缝的不对称X型坡口的下表面残余应力大于上表面残余应力,余高处残余应力集中明显。热膨胀系数高的316L不锈钢的残余应力大于CF62。  相似文献   

8.
采用单点法并在拉伸载荷的作用下,对304L和316L奥氏体不锈钢等离子弧焊接头的疲劳性能进行测试,得出应力比为0.1条件下的304L与316L奥氏体不锈钢焊接接头的疲劳极限分别为280 MPa和300 MPa;扫描电镜的观察显示奥氏体不锈钢焊接接头的疲劳裂纹扩展区均可见疲劳条带,以穿晶方式扩展,为典型的韧性断裂特征.  相似文献   

9.
孙鲁阳  李晓延  申博文  吴奇 《焊接学报》2018,39(11):108-113
通过对304 L不锈钢多层焊焊接工艺研究,利用ABAQUS有限元软件,采用热—力顺序耦合分析方法进行多层焊应力场的有限元数值计算. 奥氏体不锈钢焊接性使得焊缝金属在模拟焊接过程中出现大变形导致计算网格发生畸变,计算中止. 采用了“追踪单元”技术和网格重划分技术对应力场计算中网格畸变问题进行解决. 将数值模拟结果与实际应力测量结果进行对比. 结果表明,采用上述方法能够得到较准确的焊接残余应力结果.  相似文献   

10.
利用金相显微镜、显微硬度计和残余应力分析仪研究了4个具有不同表面形貌的316L奥氏体不锈钢经低温气体渗碳处理后的渗碳层微观形貌、硬度和残余应力。结果表明:渗碳后各试样表面均形成一层高硬度、高残余压应力的渗碳层,表面强化效果显著。表面形貌对316L奥氏体不锈钢低温气体渗碳有一定影响。随着试样表面粗糙度的下降,渗碳处理后的硬度、残余应力和渗碳层厚度均降低,表面强化效果下降,并最终趋于稳定。  相似文献   

11.
Both experimental method and numerical simulation technology were employed to investigate welding residual stress distribution in a SUS304 steel multi-pass butt-welded joint in the current study. The main objective is to clarify the influence of strain hardening model and the yield strength of weld metal on prediction accuracy of welding residual stress. In the experiment, a SUS304 steel butt-welded joint with 17 passes was fabricated, and the welding residual stresses on both the upper and bottom surfaces of the middle cross section were measured. Meanwhile, based on ABAQUS Code, an advanced computational approach considering different plastic models as well as annealing effect was developed to simulate welding residual stress. In the simulations, the perfect plastic model, the isotropic strain hardening model, the kinematic strain hardening model and the mixed isotropic-kinematic strain hardening model were employed to calculate the welding residual stress distributions in the multi-pass butt-welded joint. In all plastic models with the consideration of strain hardening, the annealing effect was also taken into account. In addition, the influence of the yield strength of weld metal on the simulation result of residual stress was also investigated numerically. The conclusions drawn by this work will be helpful in predicting welding residual stresses of austenitic stainless steel welded structures used in nuclear power plants.  相似文献   

12.
采用热-弹塑性三维有限元法研究激光熔透焊接Ti6Al4V合金的残余应力,并采用小孔法测量焊接残余应力以和计算结果进行比较.有限元计算时,建立了以焊缝形貌尺寸为参数的统一锥形热源模型来模拟不同热输入时的焊接温度场,并讨论了边界条件和有限元网格大小的确定.研究结果表明:采用焊缝轮廓尺寸作为热源参数能准确模拟焊缝横截面轮廓;钛合金激光熔透焊接的纵向残余应力分布梯度陡;在焊件表面和内部残余应力分布趋势不同,采用小孔法测量的残余应力分布和计算的焊接件内部残余应力分布相似.  相似文献   

13.
The residual stresses developed during the circumferential butt gas tungsten arc welding (GTAW) process of Incoloy 800H pipes were simulated using the finite element method. A decoupled thermostructural model was developed in three dimensions. The element birth and death technique was used for the addition of filler material in the weld pool. The Goldak double ellipsoidal model was used to simulate the distribution of arc heat during welding. The plastic behavior of the material was described by Von Mises yield function and the bilinear kinematics hardening was assumed. To validate the thermostructural model, both temperature and residual stress distributions within the pipes were measured using thermocouples and strain gages, respectively. Good agreements were found between the experimental and simulation results. The model was then used to predict distribution of residual stresses during the GTAW of Incoloy 800H pipes and to study effects of process parameters on the residual stresses.  相似文献   

14.
基于有限元分析软件MSC. Marc,开发了用于模拟焊接温度场、焊接应力场和应变场的热-弹-塑性有限元计算方法. 以低合金高强度钢SM490A为研究对象,采用移动热源和实测得到的YGT50焊缝与母材高温热物理性能和力学性能数据,数值模拟了SM490A钢单道堆焊接头的焊接残余应力. 并重点讨论了高组配接头焊缝的屈服强度对焊接残余应力的峰值和分布的影响. 结果表明,对于高组配接头,当把焊缝和母材不加区分(等强匹配),两者都采用母材的屈服强度来计算焊接残余应力时,得到的焊缝处纵向残余应力明显低于实测值;当分别采用焊缝和母材的屈服强度来计算焊接残余应力时,得到的焊缝处纵向残余应力与试验值非常接近.  相似文献   

15.
建立304不锈钢T形接头三维有限元模型,研究激光电弧复合焊接顺序对304不锈钢T形接头热变形及残余应力的影响. 采用高斯面热源加高斯锥形体热源组合的热源模型,模拟激光电弧复合热源,并通过304不锈钢激光电弧复合堆焊工艺试验验证数值模拟激光电弧复合焊接过程的可靠性. 结果表明,焊缝截面熔池形貌的数值仿真结果与焊接工艺试验结果吻合较好,该热源模型能有效模拟激光电弧两种热源的复合作用. 确定多种焊接顺序方案,分析不同焊接顺序下T形接头温度场、残余应力和热变形情况,激光电弧复合焊接顺序对T形接头残余应力及热变形均有影响,通过对比不同顺序下残余应力值及热变形量发现,顺序焊接能有效减小焊接残余应力,同时反向焊接产生的热变形量最小. 综合分析,不锈钢T形接头顺序反向焊接的效果最佳.  相似文献   

16.
In the present paper, a numerical model consisting of a heat transfer analysis based on the Thermal Pseudo Mechanical (TPM) model for heat generation, and a sequentially coupled quasi-static stress analysis with a built-in metallurgical softening model was implemented in ABAQUS. Both isotropic and kinematic rules of hardening were used in order to study the effect of the hardening law on the residual stresses as well as on the final yield stress. This numerical model was then applied in two different cases. Firstly, a very simple 1D Satoh test was modeled. Different combinations of either isotropic or kinematic hardening together with the metallurgical softening model were applied in order to give a first impression of the tendencies in residual stresses in friction stir welds when choosing different hardening and softening behaviors. Secondly, real friction stir butt welding of aluminum alloy 2024-T3 were simulated and compared with experimentally obtained results for both temperatures and residual stresses (using the slitting method). The comparisons showed good agreement regarding temperatures whereas the residual stress comparisons indicated different sensitivities for the cold and hot welding conditions toward the choice of hardening rules and especially whether including the softening model or not.  相似文献   

17.
为了准确地预测核电SA508-3钢的大型筒体环焊温度和残余应力变化规律,基于ANSYS有限元软件,引入子结构法优化焊接模拟过程,并比较模拟结果与试验数据.结果表明,文中采用的计算方法成功地模拟了更加接近真实的筒体环焊过程,且模拟结果与实测值基本吻合;焊缝上所有节点的热循环曲线相似,热影响区的模拟宽度为4 mm左右;筒体外表面焊缝中心线上任意节点的残余应力大小相近,仅在靠近筒体外表面焊缝中心线附近存在一定的轴向压应力,其它区域大部分为拉应力,环向保持较高的拉应力;筒体焊后产生内凹残余变形;结果可为分析大型筒体环焊残余应力提供参考数据.  相似文献   

18.
Abstract

Flash-butt welding is used in the manufacture of continuously-welded rails. Finished welds typically exhibit high tensile residual stresses in the rail web and at the upper surface of the rail foot, which may increase the risk of fatigue failure in service. An understanding of the influence of the welding process, including post-weld cooling, on the residual stress distribution is necessary to improve the performance of flash-butt welds by post-weld heat treatment (PWHT), since incorrect treatment may have adverse effects on both residual stress and weld material characteristics. A finite element model has been developed to simulate post-weld cooling in flash-butt welded AS60 kg m–1 rail. Computed thermal histories for normal (air) cooling, rapid PWHT, and accelerated cooling (water spray) were used as inputs to calculate sequentially coupled stress–time histories, including phase transformations. In addition, the localised influence of the initiation time for rapid PWHT, after final upset, on the reduction of tensile residual stresses was investigated. Heating the rail foot immediately after final upset reduced tensile residual stresses in the web region of the weld. Preliminary numerical predictions showed that water quenching the entire weld region too soon after the austenite–pearlite transformation is completed can induce further tensile residual stresses without affecting the microstructure. The results of the numerical analysis can be used to modify the flash-butt welding procedure to lower residual stress levels, and hence improve weld performance.  相似文献   

19.
P92 steel is a typical 9%similar to 12% Cr ferrite heat-resistant steel with good high temperature creep resistance, relatively low linear expansion coefficient and excellent corrosion resistance, so it is one of important structural materials used in supercritical thermal power plants. Fusion welding technology has been widely used to assemble the parts in thermal power plant. When the supercritical unit is in service, its parts are constantly subjected to combination of tensile, bending, twisting and impact loads under high temperature and high pressure, and many problems such as creep, fatigue and brittle fracture often occur. It has been recognized that welding residual stress has a significant impact on creep, fatigue and brittle fracture, so it is necessary to study the residual stress of P92 steel welded joints. The evolution and formation mechanism of welding residual stress in P92 steel joints under multiple thermal cycles were investigated in this work. Based on SYSWELD software, a computational approach considering the couplings among thermal, microstructure and mechanics was developed to simulate welding residual stress in P92 steel joints. Using the developed computational tool, the evolution of residual stress in Satoh test specimens was studied, and welding residual stress distribution in double-pass welded joints was calculated. In the numerical models, the influences of volume change, yield strength variation and plasticity induced by phase transformation on welding residual stress were taken into account in details. Meanwhile, the hole-drilling method and XRD method were employed to measure the residual stress distribution in the double-pass welded joints. The simulated results match the experimental measurements well, and the comparison between measurements and predictions suggests that the computational approach developed by the current study can more accurately predict welding residual stress in multi-pass P92 steel joints. The simulated results show that the longitudinal residual stress distribution around the fusion zone has a clear tension-compression pattern. Compressive longitudinal residual stresses generated in the fusion zone and heat affected-zone (HAZ) in each pass, while tensile stresses produced near the HAZs. In addition, the numerical simulation also suggests that the transverse constraint has a large influence on the transverse residual stress, while it has an insignificant effect on the longitudinal residual stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号