首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
为进一步了解复杂裂隙断裂破坏过程,基于断裂力学理论,采用PFC2D软件对不同裂隙数量岩体进行数值试验,分析裂隙倾角、围压等因素对岩体强度及裂纹扩展的影响规律。研究表明:随着裂隙倾角增大,单裂隙峰值应力和起裂应力先减小后增大,当围压由2 MPa增加到8 MPa时,峰值应力约从120 MPa增大到160 MPa,且起裂应力随着围压增大而增大,与理论分析结果一致;双裂隙倾角为30°和45°裂隙扩展以翼型裂纹和次生斜裂纹为主,裂隙倾角为60°和90°时主要为共面次生裂纹;不同围压下,随着预制裂隙数量增多,裂隙岩体试样峰值应力逐渐减小。研究成果为进一步探索裂隙岩体失稳破坏规律提供参考。  相似文献   

2.
为了研究裂隙砂岩力学特性,利用颗粒流(PFC)软件构建含不同几何状态的裂隙试样模型,分析裂隙几何状态对裂隙试样力学特性和变形特性的影响。结果表明:相比于完整试样,裂隙试样的峰值强度、弹性模量、峰值轴向应变均有所降低,泊松比明显提高;裂隙试样峰值强度、弹性模量随着岩桥宽度的增加逐渐增加,随着岩桥倾角增加,裂隙试样弹性模量呈现先减小后增大的变化规律,当岩桥倾角与裂隙倾角相同时,裂隙试样的弹性模量、峰值强度最小;裂隙试样泊松比随着岩桥宽度、围压的增加逐渐降低,随着围压增加,裂隙试样峰值强度、峰值轴向应变逐渐增加;裂隙的存在弱化了试样的力学特性,改变了试样的变形特性,岩桥宽度越小,弱化能力越强,相比于岩桥宽度对裂隙试样的影响程度,岩桥倾角对试样的影响程度较小。  相似文献   

3.
为了研究围压对灰岩力学特性及破坏力学模型的影响,采用MTS815对完整灰岩岩样进行三轴压缩试验。基于岩样宏观破坏形式,建立张拉剪切破坏模型,构建峰值强度与围压关系表达式;讨论张拉剪切模型与纯剪切模型对岩石剪切强度参数值(粘聚力与内摩擦角)的影响。研究结果表明:岩样弹性模量、抗压强度及残余强度均随围压升高而增大,且残余强度与围压呈非线性相关;当岩样最终破坏时,环向应变与轴向应变比值随围压升高呈负指数降低;一定围压范围内,岩石抗压强度受剪切强度参数和抗拉强度影响;张拉剪切模型确定岩石剪切强度参数值随破裂角增大而增大,与纯剪切模型相比,数值均较小。因此,低围压时,考虑岩石破坏模型具有一定的实际意义。  相似文献   

4.
为探索不同倾角裂隙岩体在单轴压缩作用下的破坏形式,利用二维颗粒流程序(PFC2D)对不同倾角裂隙岩体试样进行单轴压缩数值模拟,研究了不同倾角裂隙岩体的强度变化规律、破坏形式以及裂纹扩展路径。结果表明:不同倾角预制裂隙岩体的破坏模式略有不同;不同倾角预制裂隙岩体破坏过程基本一致,都会经历弹性变形阶段、裂纹稳定扩展阶段、岩体失稳阶段3个阶段;不同倾角裂隙的存在使得岩体的抗压强度有不同程度的降低;在单轴压缩破坏中,裂隙的顶点应力集中现象比较严重,沿裂隙岩体对角线方向产生的裂纹最多。该数值模拟分析为进一步探索地下工程中裂隙岩体失稳破坏规律提供了参考。  相似文献   

5.
采用颗粒流分析软件,对含有不同岩桥倾角的两条雁行预制裂隙岩样进行数值模拟.研究表明,当岩桥倾角为80°和90°时,在荷载作用下裂隙内外端有翼裂纹出现,同时次生裂纹在预制裂隙尖端出现,岩桥区域主要产生拉剪复合型的贯通;当岩桥倾角为120°时,随着荷载的增加,一条预制裂隙内端翼裂纹扩展至另一条预制裂隙内端或中部,岩桥区域主要产生拉伸型的贯通,且翼裂纹是张性的.数值模拟结果表明,非叠合裂隙试样强度均低于叠合裂隙试样强度,当裂隙呈现一定交角时,其相互之间会产生屏蔽效应,造成试样强度增加.  相似文献   

6.
目的 研究试样的尺寸效应和由于节理存在引起的各向异性对岩体的力学特性的影响.方法 基于应变软化模型和遍布节理模型,通过多组岩体试样的单轴压缩试验和三轴试验数值模拟,对试样峰值强度和应力应变关系进行对比分析.结果 岩体轴向峰值强度随岩体尺寸增大而减小,峰后残余强度却相应增大;节理倾角与45°+ Φ/2(Φ为节理内摩擦角)越接近,岩体水平加载与竖直加载峰值强度相差越小.一组节理时,岩体节理面与加载面夹角在45°~75°,峰值强度最小,围压增加,岩体峰值强度增加,但增长速率逐渐变缓.结论 岩体单轴压缩峰值强度、峰后残余强度和塑性区形态受岩体尺寸效应影响较大;在节理岩体中,岩体抗压性能受节理倾角及围压影响较大.  相似文献   

7.
高围压卸荷条件下大理岩变形破坏及能量特征研究   总被引:1,自引:1,他引:0  
能量的耗散与释放是岩石变形破坏的本质。基于MTS815 Flex Test GT岩石力学试验平台,通过室内三轴卸荷试验和数学物理分析方法,揭示了大理岩在高围压三轴卸荷条件下的应力应变关系及能量变化特征。结果表明,初始围压的增大将显著提升岩样峰值强度时的可释放应变能以及最终总能量;随着围压的增大,岩样所吸收的能量变化的快慢程度随着偏应力变化而有所减缓;峰值强度时岩样可释放应变能占总能量的比例随着围压的增大而急剧增大,而残余强度时所吸收的总能量几乎全部转化为耗散能;大理岩能量指标存在明显的围压效应,即峰值总能量和残余总能量随着围压增大而显著提高,且具有良好的线性关系。  相似文献   

8.
从河口村水库坝肩取样制备完整的和含裂隙的灰岩试样,利用TAW-2000岩石三轴仪对制备的岩样进行不同围压下的岩石三轴压缩试验,得到了完整和裂隙灰岩在不同围压下的应力-应变曲线及其变形、强度和破裂特性规律。试验中,裂隙面与最大主应力夹角为0°~80°,围压为5~15 MPa。试验结果表明:完整灰岩的峰值强度和变形模量随围压的增大而增大,并且呈线性关系;裂隙灰岩在三轴压缩下有两种破坏形态,分别为穿裂隙面破坏和沿裂隙面滑移破坏;裂隙灰岩的强度和变形特性及破坏特征受裂隙面倾角θ的影响很大,当θ60°时,沿裂隙面滑移破坏,当θ≤60°时,穿裂隙面破坏;其中穿裂隙面破坏的灰岩与完整灰岩均为岩体材料的破坏,并且与完整灰岩的破坏形态和强度变形特征相似。  相似文献   

9.
利用MTS815电液伺服控制刚性试验机进行不同围压下茅口灰岩三轴压缩试验,通过计算绘得相应裂隙体积应变图,分析得出裂纹起始应力、裂纹破坏应力。结果表明:随着围压的增大,应力门槛值均呈非线性增长态势,当围压超过17 MPa时,裂纹起始应力、裂纹破坏应力分别增加48.5%和20.1%,茅口灰岩延性开始增强;裂纹破坏应力为峰值强度的64%~75%,三轴压缩下茅口灰岩裂隙不稳定发展阶段较长;环向应变值随围压增大而增大,当轴力超过裂纹破坏应力进入裂隙不稳定发展阶段,环向应变增大2.7~3.2倍,用环向-轴向应力应变曲线图能较好的反映岩石应力门槛值。  相似文献   

10.
通过对含预制椭圆形孔洞板状砂岩试样进行单轴压缩试验,研究了椭圆长轴与短轴之比k及石膏充填作用对岩样强度和破坏特征的影响规律.研究表明,含孔洞岩样的强度和变形参数相对于完整试样均有不同程度的降低,而石膏充填后试样的峰值强度和弹性模量均有所提高,但峰值应变无明显变化规律;无论充填与否,试样峰值强度均随着k值的增加均呈指数形式降低;充填作用对岩样宏观破坏模式无明显影响,岩样最终均以剪切破坏为主,主破裂面沿对角线分布;相对于无充填的岩样,石膏充填后的岩样破坏时宏观裂隙数目增多,破坏程度加剧.  相似文献   

11.
基于破坏类型的本溪灰岩本构关系研究   总被引:1,自引:1,他引:0  
根据单轴和三轴条件下本溪灰岩的压缩试验和峰后循环加载试验,总结本溪灰岩的强度、变形随围压的变化规律,研究不同围压下本溪灰岩的破坏过程和重复加载过程,分析不同应力条件下本溪灰岩破坏的方式.结果表明:本溪灰岩在应力刚过峰值且未完全进入残余强度阶段,其弹性模量与峰前相同,此阶段进行循环加载时,新的峰值应力低于卸载点应力;在残余强度阶段,残余强度不再随重复加载发生明显变化;采用比较峰值时的环向弹性应变值与环向应变值的方法来判别本溪灰岩的破坏类型是可行的;不同围压下,本溪灰岩的破坏方式有张性破坏和剪切破坏2种类型,这2种破坏方式下本构模型的控制参数是不同的.分别选取了环向应变和剪切应变作为控制参数建立了本构模型,该模型很好地描述了本溪灰岩峰后阶段的应力脆性跌落现象及应力与应变的关系.  相似文献   

12.
为了研究单轴压缩下含裂隙黄砂岩的损伤劣化机理,利用伺服压力机对预制断续三裂隙黄砂岩进行单轴压缩试验,并结合高清摄像机录像对试样破坏全过程进行监控,进而分析了不同中心裂隙倾角α对三裂隙黄砂岩力学特性、裂纹扩展规律及破坏模式的影响。结果表明,随着中心裂隙倾角α的增加:(1)三裂隙黄砂岩单轴抗压强度先增大后减小,与完整砂岩试样相比,三裂隙黄砂岩试样峰值强度降低明显;(2)初始裂纹由岩桥区域附近萌生,α=15°、30°时垂直于中心裂隙B,α=45°时发展为连通裂隙AB、BC尖端并与中心裂隙B成一定角度,次生裂纹沿轴向扩展,主裂纹沿试样上下端面及边缘扩展;(3)裂隙砂岩试样的破坏模式由张拉破坏变为劈裂破坏,最后变为剪切破坏。  相似文献   

13.
为了研究预制裂纹岩板破坏电位和电磁辐射变化规律,对不同裂纹倾角花岗岩板进行了不同加载速率单轴压缩实验.结果表明:预制裂纹岩板电位和电磁辐射随载荷的变化而变化,破坏前出现电磁辐射能量峰值和一定的电位峰值,电位和电磁辐射能量增量与变化率一般会出现突变;电位变化幅度及其破坏前均值与距离主破裂的位置有关;预制裂纹倾角越大,载荷峰值越小,其出现时间越早,电磁辐射能量峰值越靠近载荷峰值,破坏前电磁辐射能量均值越低;加载速率越大,电磁辐射能量超前破坏时间越短.电磁辐射能量与电位增量、变化率、标准差、均值、变异系数可以作为研究煤岩破坏前兆特征的指标.  相似文献   

14.
为了探究岩体内部裂隙的扩展破坏过程,本文研制出一种新型透明类岩石材料,在内部预制裂隙进行单轴压缩试验。试验详细观察了预制裂隙试件完全破坏总过程,分析总结了裂纹扩展的每个阶段所呈现出来的特点和规律,研究了不同长度裂隙对试件基本物理力学参数的影响,得出了裂隙长度越大,试件的单轴抗压强度和弹性模量都越低的结论。  相似文献   

15.
运用岩石破裂过程分析软件——RFPA2D,通过对岩石试样中预置一组裂纹,研究了裂纹几何分布(不同裂纹倾角、不同岩桥倾角)及围压条件对裂纹扩展模式的影响。数值模拟再现了非均匀岩石介质中多裂纹扩展的相互作用模式及其贯通机制。结果表明:1)预置裂纹的几何分布对裂纹贯通机制有显著影响。2)随着裂纹倾角的增大,试样的平均峰值强度明显增加,当裂纹倾角较大(75°左右)时,峰值强度接近无预置裂纹试样。3)随着围压的增大,剪破裂明显增多,剪裂纹对扩展模式起主导作用。在高围压条件下,试样的破裂形式与在低围压下显著不同,且与均质试样的破裂形式也有显著不同。  相似文献   

16.
采用全应力多场耦合三轴试验仪,对饱和花岗岩开展了不同加载速率、不同围压、不同孔压下的水-力耦合三轴压缩排水试验,分别给出了饱和花岗岩在不同加载速率、不同有效围压下的应力-应变曲线,分析了峰值强度、峰值应变、弹性模量随加载速率以及有效围压的变化规律。研究结果表明:(1)在不同有效围压和加载速率的条件下,岩样的应力应变曲线均经历了非线性压密、弹性、屈服、峰后四个阶段。偏压加载初期非线性压密阶段比较明显,而随着围压的升高非线性段逐渐消失;由于花岗岩的致密性较高,因而曲线的弹性阶段较长且相对平滑;在屈服和峰后阶段,岩石呈现出明显的脆—延性转化的过程。(2)饱和花岗岩的峰值强度随着加载速率的增加而增大;且当有效围压相同时,岩石的峰值强度大致相等,抵抗外界荷载的能力大致相同。(3)缓慢加载条件下饱和花岗岩的峰值应变表现出加载速率强化效应,但强化效果是有限的;且在有效围压相同条件下,随着围压和孔压的同步增长,峰值应变也呈增长的趋势。(4)弹性模量随着加载速率的增加呈二次多项式增长,但随着围压和孔压的同步增长而逐渐降低。  相似文献   

17.
利用ABAQUS软件的扩展有限元法对不同倾角的半椭圆形表面裂纹岩体进行数值模拟研究,结果表明:随着裂隙倾角的增大裂纹峰值强度也逐渐增大,并且发现裂隙的倾角对于表面裂纹影响比较大,Ⅰ型应力强度因子在裂纹扩展中起到重要的作用。  相似文献   

18.
通过对含3条填充预制裂隙或含3条非填充预制裂隙巴西圆盘进行巴西劈裂试验,研究了岩桥倾角β和预制裂隙是否填充对试样强度和裂纹扩展规律的影响.结果表明:不论预制裂隙是否填充,含三裂隙圆盘试样强度均表现为随岩桥倾角β的增加而先减小后增加最后又减小;并且填充试样发生应力跌落后表现为由脆性向延性转化的特点,而非填充试样始终表现为...  相似文献   

19.
节理倾角对单节理岩样变形破坏影响的数值模拟   总被引:5,自引:1,他引:4  
采用FLAC模拟了节理倾角对各向异性岩样峰值强度、力学行为及剪切带图案的影响。节理由实体单元模拟。对于节理之外的岩石,采用莫尔库仑与拉破坏复合的破坏准则,峰后本构关系选择线性应变软化模型;对于节理,采用理想弹塑性的莫尔库仑准则。结果表明,无节理密实岩石的峰值强度最高。节理岩样的剪切应变或集中在节理上,或集中在新剪切带上,峰值强度随节理倾角而改变。新剪切带启动于节理的端部,然后沿其固有方向传播。当节理倾角适中时,节理岩样的峰值强度较低,岩样的行为受控于节理。当节理倾角较高或较低时,可观测到应变软化行为。若节理倾角较低,新剪切带的长度随节理倾角的降低而增加,这导致了陡峭的峰后应力-应变曲线。若节理倾角较高,由于节理倾角对新剪切带的厚度和倾角几乎没有影响,因此,峰后斜率不依赖于节理倾角。  相似文献   

20.
岩体强度是影响岩体工程安全的重要因素,其会因多种因素的改变而变化,研究不同因素对裂隙扩展的影响,可以获得不同因素对岩体强度影响规律,为保证岩体工程的安全和稳定提供参考依据。文章主要考虑节理位置、围压和温度对岩体破裂过程的影响,通过室内试验分析节理位置对岩体裂隙扩展规律的影响,研究围压的改变对岩体峰值强度和破裂形态的作用,通过加卸载试验定性分析了洞室开挖掌子面的卸荷效应,并对4种较低温度和3种超高温度下岩体的裂隙扩展形态和规律进行了研究。结果表明:节理位于试件端部时,以翼裂纹扩展为主、次生裂隙扩展为辅,主要产生张拉裂纹,而节理位于试件中间时,主要产生剪切裂纹;围压的增加会提高岩体的强度,抑制裂纹的扩展,岩体卸载容易产生劈裂破坏;温度能够降低岩体的强度,超高温条件下,岩体易产生炸裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号