首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chitinolytic bacterium Clostridium paraputrificum strain M-21 produced 2.2 and 1.5 mol hydrogen gas from 1 mol N-acetyl-D-glucosamine (GlcNAc) and ball-milled chitin equivalent to 1 mol of GlcNAc, respectively, at pH 6.0. In addition, strain M-21 efficiently degraded and fermented ball-milled raw shrimp and lobster shells to produce hydrogen gas: 11.4 mmol H2 from 2.6 g of the former and 7.8 mmol H2 from 1.5 g of the latter. Hydrogen evolution from these shell wastes were enhanced two fold by employing acid and alkali pretreatment. Waste from the starch industry was also converted to hydrogen. When C. paraputrificum M-21 was cultivated on ball-milled chitin and ball-milled shrimp shells for 14 and 12 h, respectively, chitinases ChiA and/or ChiB were detected as the major chitinase species in the supernatant of the cultures, suggesting that the play a critical role in the degradation of chitinous materials.  相似文献   

2.
Corn starch and soybean oil are suitable carbon sources for the production of tetracycline by Streptomyces aureofacience CG-1. However, it could not produce more than 6 g/l of tetracycline even if initial corn starch concentration was increased to more than 100 g/l. It was confirmed by shaking flask experiments that the kLa in a mixture of 2% soybean oil in water was four folds compared with that without soybean oil. With the addition of soybean oil to the starch medium in a shaking flask, tetracycline production was significantly improved. By scaling-up to a 5.5-l airlift bioreactor from 500-ml Erlenmeyer flask, more than 10 g/l of tetracycline was produced with the addition of 60 g/l of soybean oil to the medium containing 100 g/l of corn starch. The dissolved oxygen level in the airlift bioreactor containing soybean oil was higher than that without soybean oil. This suggests that soybean oil is not only a suitable carbon source but is also a surface-active agent which may accelerate the oxygen transfer. This may lead to the possibility of the enhanced production of tetracycline at a low cost in airlift bioreactor.  相似文献   

3.
芽孢杆菌M-21产β-甘露聚糖酶发酵条件研究   总被引:1,自引:0,他引:1  
从土壤中分离筛选出产β-甘露聚糖酶的芽孢杆菌(Bacillus sp.)M-21,通过单因素实验和正交优化实验,确定了其最佳发酵产酶条件。菌株的产酶最适培养基组成包括(g/L)碳源:瓜尔豆胶4,复合氮源:豆粉20、(NH4)2HPO45,其他无机盐组分:K2HPO4.3 H2O1、MgSO4.7 H2O 0.5、NaCl 0.5、CaCl20.1、FeSO4.7 H2O0.001。产酶最适培养条件:培养基初始pH8.0,接种量4%,装液量50 mL/250 mL三角瓶,32℃180 r/min振荡培养36 h。此条件下酶活力最高可达1 487 U/mL。  相似文献   

4.
The effect of growing Bacillus subtilis, Streptococcus faecalis var. liquefaciens, Escherichia coli and Lactobacillus plantarum on staphylococcal growth and thermonuclease (TNase) activity was investigated in liquid media and in foods. Growth of S. aureus at 37°C for 24 h under aerobic conditions was not inhibited by the four test strains. However, staphylococcal TNase activity decreased by 70 and 80% in the presence of B. subtilis and S. faecalis var. liquefaciens respectively. Staphylococcal growth and TNase activity were strongly inhibited by L. plantarum under anaerobic conditions at pH 5.5 but not at pH 7.0. Furthermore, optimal TNase production by S. aureus occurred in cooked meat medium containing 0.5 to 5.0% NaCl. TNase production significantly decreased at higher concentrations of NaCl. In the presence of B. subtilis and S. faecalis var. liquefaciens. TNase activity decreased at NaCl levels of 0.5 to 5.0% but not at NaCl concentrations>5.0%. TNase activity was also inhibited by growing B. subtilis and S. faecalis var. Liquefaciens at pH 5.0 to 7.0. The rate of inhibition increased with increasing pH. TNase activity was not inhibited after 48 h incubation at 20° in the presence of B. subtilis and S. faecalis var. liquefaciens but significant inactivation could be demonstrated at 25° to 37°C. The results obtained with artificially contaminated, sterile food samples were similar to those obtained with brain-heart infusion broth, but the degree of decrease in TNase activity in food was much lower than that in brain-heart infusion broth.  相似文献   

5.
Two chitinases (P-1 and P-2) induced with colloidal chitin were purified from the culture supernatant of Isaria japonica by chromatography on DEAE Bio-Gel, chromatofocusing and gel filtration with Superdex 75 pg. The enzymes were electrophoretically homogeneous and estimated to have a molecular mass of 43,273 (±5) for P-1 and 31,134 (±6) for P-2 by MALDI-MS. The optimum pH and temperature was 3.5–4.0 and 50°C for P-1 and 4.0–4.5 and 40°C for P-2. P-1 acted against chitosan 7B (degree of deacetylation, 65–74%) = glycol chitin> colloidal CHITIN = chitosan 10B (degree of deacetylation, above 99%) and P-2 against chitosan 7B> glycol CHITIN = chitosan 10B> colloidal chitin in order of activity. The products of hydrolysis of chitin and chitosan hexamer were analyzed by MALDI-MS. The products from the chitin hexamer obtained with P-1 were almost all dimers with only a small amount of trimer whereas those obtained with P-2 were mainly trimers with some dimer and tetramer. No hydrolysis of chitosan hexamer was observed. High homology in the amino-terminal sequence for chitinase P-1 was exhibited by chitinases from Trichoderma harzianum, Candida albicans and Saccharomyces cerevisiae in the range of 48–39%. The highest homology for Chitinase P-2 was shown by an endochitinase from Metarhizium anisopliae of 66%, while 44% homology was exhibited by chitinases of Leguminosae plants.  相似文献   

6.
丰年虾是一种小型甲壳类动物,孵化后的幼虫是水产动物的优质饵料,残留的卵壳则作为废弃物处理.然而丰年虾卵壳含有丰富的蛋白质和几丁质,具有极大的应用潜力.为了从丰年虾卵壳中制备几丁寡糖,选择了水解产物分布宽泛和含有几丁质结合域的维氏气单胞菌来源的几丁质酶ChiB565,将其在毕赤酵母Pichia pastoris中进行重组...  相似文献   

7.
The productivity of a peroxidase (DyP) originating from Geotrichum candidum Dec 1 was enhanced in the solid-state culture using Aspergillus oryzae RD005. When the humidity, water content, and temperature were adjusted to 60%, 50% and 27°C, respectively, the productivity of DyP reached 5.3 g per kilogram wheat bran, which was used as the solid medium. The yield of 5.3 g per kg wheat bran corresponded to the yield of a 56 kg submerged culture. The productivity per gram carbon of the medium in the solid-state culture was 4.1-fold that in the submerged culture.  相似文献   

8.
Fermentative production of poly- -3-hydroxybutyrate [P(3HB)] from a mixture of -lactic acid and acetic acid by Ralstonia eutropha was investigated. For fed-batch culture with cell density, it is necessary to control the concentration of these organic acids in the culture medium below the inhibitory level for cell growth. Therefore, a novel feeding method, termed the computer-controlled pH-stat substrate feeding method, was developed using the rate of increase of the pH (pH-increasing rate) of the culture medium as an indicator for feed control. The pH-increasing rate, which was calculated every minute by a pH meter-linked computer, represented secondary information regarding substrate consumption by cells. When the pH-increasing rate decreased to 5% of the maximum increasing rate, acidic substrate solution was fed into the fermentor until the pH was reduced to 7.00. Using this feeding strategy, the cell concentration and PHA content obtained in 42 h were 75.0 g/l and 73.1% (w/w), respectively, resulting in a high P(3HB) productivity of 1.30 g/l·h.  相似文献   

9.
Lactobacillus pentosus B96 is a bacteriocin-producing strain that was isolated from fermenting olive brines. The aim of the present work was the optimization of bacteriocin production, using response surface methodology (RS). A two-level screening Plackett–Burman design was used to select influencing factors. Then, a central composite design, with three repetitions in the centre, for pH, NaCl concentration, and temperature was carried out. Finally, an RS, which included the region of maximum accumulated bioactivity, was built as a function of NaCl concentration and temperature. Bioactivity accumulation was always observed during the exponential growth-phase, although no apparent correlation between maximum accumulated bioactivity and biomass formation was found. L. pentosus B96 is known to grow better at about 30 °C, neutral pH, and by the absence of NaCl; however, a suboptimal temperature (22 °C) and a moderate NaCl stress (0.65 mol l−1) stimulated bacteriocin production. The research led to environmental conditions that maximized bacteriocin activity, which can be expressed as a polynomial function of temperature and NaCl concentration. The suboptimal growth conditions, which were found to produce the highest bacteriocin titres, resembled those prevailing during green table olive fermentation. This model can be used to improve “in situ” bacteriocin production thus contributing to the microbiological control of the process.  相似文献   

10.
Alternaria alternata is a toxigenic fungus, predominantly responsible for Blackmould of ripe tomato fruits, a disease frequently causing substantial losses of tomatoes, especially those used for canning. The objective of this study was to determine the effect of water activity (aw, 0.904, 0.922, 0.954, 0.982) and temperature (6, 15, 21 and 35 °C) on germination and radial growth rate on a synthetic tomato medium of a cocktail inoculum of five strains of A. alternata isolated from tomato fruits affected by Blackmould. The shortest germination time (1.5 days) was observed at 0.982 aw, both at 21 °C and 35 °C. The germination time increased with a reduction on aw. The fastest growth rate was registered at 0.982 aw and 21 °C (8.31 mm/day). Growth rates were higher when aw increased. No growth or germination was observed at the lowest aw level evaluated (0.904) after 100 days of incubation at 6 °C and 15 °C. A temperature of 6 °C caused a significant reduction in growth rates, even at the optimum aw level. The knowledge on the ecophysiology of the fungus in this substrate is necessary to elaborate future strategies to prevent its development and evaluate the consumer health risk.  相似文献   

11.
Microbial hydrogen production from sweet potato starch residue   总被引:15,自引:0,他引:15  
Clostridium butyricum could produce hydrogen from a sweet potato starch residue upon supplementation of nitrogen sources. A repeated batch culture using a mixed culture of C. butyricum and Enterobacter aerogenes produced hydrogen with a yield of 2.4 mol H2/mol glucose under a controlled culture pH of 5.25 in a medium consisting of the sweet potato starch residue and 0.1% Polypepton without addition of any reducing agents. Rhodobacter sp. M-19 produced hydrogen from the supernatant of the culture broth obtained in the repeated batch culture containing C. butyricum and E. aerogenes when 50 microg/l Na2MoO4.2H2O and 20 mg/l EDTA were added to the supernatant and it was cultured under a controlled culture pH of 7.5. A high yield of hydrogen of 7.0 mol H2/mol glucose from the starch remaining in the starch residue was attained in two-step repeated batch cultures containing C. butyricum and E. aerogenes, and by Rhodobacter sp. M-19.  相似文献   

12.
The fate of Listeria monocytogenes, Salmonella typhimurium, or Escherichia coli O157:H7 were separately monitored both in and on soudjouk. Fermentation and drying alone reduced numbers of L. monocytogenes by 0.07 and 0.74 log10 CFU/g for sausages fermented to pH 5.3 and 4.8, respectively, whereas numbers of S. typhimurium and E. coli O157:H7 were reduced by 1.52 and 3.51 log10 CFU/g and 0.03 and 1.11 log10 CFU/g, respectively. When sausages fermented to pH 5.3 or 4.8 were stored at 4, 10, or 21 °C, numbers of L. monocytogenes, S. typhimurium, and E. coli O157:H7 decreased by an additional 0.08–1.80, 0.88–3.74, and 0.68–3.17 log10 CFU/g, respectively, within 30 days. Storage for 90 days of commercially manufactured soudjouk that was sliced and then surface inoculated with L. monocytogenes, S. typhimurium, and E. coli O157:H7 generated average D-values of ca. 10.1, 7.6, and 5.9 days at 4 °C; 6.4, 4.3, and 2.9 days at 10 °C; 1.4, 0.9, and 1.6 days at 21 °C; and 0.9, 1.4, and 0.25 days at 30 °C. Overall, fermentation to pH 4.8 and storage at 21 °C was the most effective treatment for reducing numbers of L. monocytogenes (2.54 log10 CFU/g reduction), S. typhimurium (5.23 log10 CFU/g reduction), and E. coli O157:H7 (3.48 log10 CFU/g reduction). In summary, soudjouk-style sausage does not provide a favorable environment for outgrowth/survival of these three pathogens.  相似文献   

13.
Fresh fish products are commonly sold at storage temperature. However, many undesirable changes can occur in the products during storage, due to microbial growth and fish spoilage, affording evident economic loss. The effects of ellagic acid (EA) and l-ascorbic acid (l-AA)/sodium ascorbate (SA), either alone or in combination, on the microbiological quality of fresh finfish Solea solea during storage at 0 °C, were investigated.The results showed that addition of EA (0.03%) alone or in combination with l-AA (1.71%)/SA (1.98%) significantly delayed the proliferation of aerobic plate counts, psychrotrophic counts and Pseudomonas bacteria extending the product shelf life up to 10 days, versus 8 days for control. During the storage, the pH increase is slowed down when the fish samples are subjected to the treatment with preservative agents. The effect of lowering the pH increase is particularly pronounced when a combination of EA and l-AA/SA is used. Therefore, EA alone or in combination with l-AA and SA can be successfully utilized to reduce the microbial growth, extending the shelf life of fish during storage at 0 °C.  相似文献   

14.
A gene encoding chitinase from Aeromonas sp. no. 10S-24 was expressed using pTrc99A in Escherichia coli JM 105 which yielded a 5-fold higher activity than when pUC19 was used. Three different truncated enzymes (SA-1, SA-2 and SA-3) were obtained after purification. Their isoelectric points were 7.0, 6.9, and 6.7, respectively. The enzymes showed two optimum pHs, 4.0 and 7.0, when incubated with ethylene glycol chitin as the substrate, and were stable over a wide pH range (3.0–9.0). The optimum temperature was 60°C and the enzymes were stable up to 50°C. The chitinases exhibited wide substrate specificities for chitin-related compounds.  相似文献   

15.
We studied the production and stability of chlorine dioxide (ClO2) in organic acid solutions and its effectiveness in killing Bacillus cereus spores. Sodium chlorite (5000, 10,000, or 50,000 μg/ml) was added to 5% acetic, citric, or lactic acid solution, adjusted to pH 3.0, 4.0, 5.0, or 6.0, and held at 21 °C for up to 14 days. The amount of ClO2 produced was higher as the concentration of sodium chlorite was increased and as the pH of the acid solutions was decreased. However, the stability in production of ClO2 was enhanced by increasing the pH of the organic acid solutions. To evaluate the lethal activity of ClO2 produced in various acid solutions as affected by acidulant and pH, suspensions of B. cereus spores were treated at 21 °C for 1, 3, 5, or 10 min in hydrochloric acid or organic acid solutions (pH 3.0, 4.0, 5.0, or 6.0) containing ClO2 at concentrations of 100, 50, or 25 μg/ml. Populations of viable spores treated with ClO2 at concentrations of 100 or 50 μg/ml in organic acid solutions decreased more rapidly than populations treated with the same concentrations of ClO2 in HCl. Rates of inactivation tended to increase with higher pH of ClO2 solutions. Results show that ClO2 formed in organic acid solutions has higher stability and is more lethal to B. cereus spores than ClO2 formed at the same concentration in HCl solution. This finding emphasizes the benefits of using organic acid solutions to prepare ClO2 intended for use as an antimicrobial.  相似文献   

16.
Under the same experimental conditions it has been demonstrated that whereas survival curves of Listeria monocytogenes in the range of temperatures from 54 to 62 °C followed a first-order kinetic, those of Pseudomonas aeruginosa in the range of temperatures from 50 to 56 °C were not linear showing a shoulder followed by a linear region. The first order kinetic model did not describe survival curves of P. aeruginosa. A model based on the Weibull distribution (Log10(Nt/N0)=(1/−2.303)*(t/b)n)) accurately described the inactivation kinetics of both microorganisms at the three pHs of 4, 5.5, 7.4 investigated. For both microorganisms, the b value depended on the treatment temperature and the pH of the treatment medium. Whereas for L. monocytogenes the n value was independent of the treatment conditions, for P. aeruginosa the n value depended on the pH of the treatment medium.The model based on the Weibull distribution was capable of accurately predicting the treatment time to inactivate five Log10 cycles of both microorganisms at the three pHs investigated.  相似文献   

17.
The β-mannanase gene, man5C1, was cloned from Penicillium pinophilum C1, a strain isolated from the acidic wastewater of a tin mine in Yunnan, China, and expressed in Pichia pastoris. The sequence analysis displayed the gene consists of a 1221-bp open reading frame encoding a protein of 406 amino acids (Man5C1). The deduced amino acid sequence of Man5C1 showed the highest homology of 57.8% (identity) with a characterized β-mannanase from Aspergillus aculeatus belonging to glycoside hydrolase family 5. The purified rMan5C1 had a high specific activity of 1035 U mg–1 towards locust bean gum (LBG) and showed highest activity at pH 4.0 and 70°C. rMan5C1 was adaptable to a wide range of acidity, retaining > 60% of its maximum activity at pH 3.0–7.0. The enzyme was stable over a broad pH range (3.0 to 10.0) and exhibited good thermostability at 50°C. The Km and Vmax values were 5.6 and 4.8 mg mL–1, and 2785 and 1608 μmol min–1 mg–1, respectively, when LBG and konjac flour were used as substrates. The enzyme had strong resistance to most metal ions and proteases (pepsin and trypsin), and released 8.96 mg g–1 reducing sugars from LBG in the simulated gastric fluid. All these favorable properties make rMan5C1 a promising candidate for use in animal feed.  相似文献   

18.
It was found that pH control definitely affects mycelial cell growth and exopolysaccharide (EPS) production of the mycelial cultivation of Ganoderma lucidum. Compared to the case of uncontrolled pH cultivation, a culture system whose pH was kept constant at 3 and 6 exhibited improved mycelial cell growth and EPS production, respectively. The bistage pH control technique, that is, shifting the pH from 3 to 6 at the initial phase of the exponential growth, is introduced to improve cell growth and EPS production. This technique can greatly increase EPS production to 20.1 g/l from 4.1 g/l in the case of uncontrolled pH cultivation, without adverse effects on cell growth as in the case of constant maintenance of a high pH. It was also proved that bistage pH control retained the desirable morphologies of the mycelia during cultivation and resulted in low viscosity and yield stress of the culture broth. It will be useful for the application of the culture process to mycelial growth in a large-scale fermentor.  相似文献   

19.
The objective was to evaluate and compare the pulsed electric field (PEF) resistance of four Gram-positive (Bacillus subtilis, Listeria monocytogenes, Lactobacillus plantarum, Staphylococcus aureus) and four Gram-negative (Escherichia coli, E. coli O157:H7, Salmonella serotype Senftenberg 775W, Yersinia enterocolitica) bacterial strains under the same treatment conditions. Microbial characteristics such as cell size, shape or type of the cell envelopes did not exert the expected influence on microbial PEF resistance. The most PEF resistant bacteria depended on the treatment medium pH. For instance, L. monocytogenes, which showed the highest PEF resistance at pH 7.0, was one of the most sensitive at pH 4.0. The most PEF resistant strains at pH 4.0 were the Gram-negatives E. coli O157:H7 and S. Senftenberg. A subsequent holding of PEF-treated cells in pH 4.0 for 2 h increased the degree of inactivation up to 4 extra Log10 cycles depending on the bacterial strain investigated. Under these treatment conditions, the most PEF resistant bacterial strains were still the pathogens S. Senftenberg and E. coli O157:H7.

Industrial relevance

The design of appropriate food preservation processes by PEF requires the selection of an adequate target bacterial strain, which should correspond to the most PEF resistant microorganism contaminating food. This study indicates that the pH of the treatment medium plays an important role in determining this target bacterial strain. On the other hand, the combination of PEF and subsequent holding under acidic conditions has been proven to be an effective method in order to achieve a higher level of microbial inactivation.  相似文献   

20.
Bovine Enterococcus mundtii CRL1656 (Centro de Referencia para Lactobacilos Culture Collection) produces an anti-Listeria and anti-Streptococcus dysgalactiae bacteriocin identified as mundticin CRL1656. The strain and its bacteriocin are candidates to be included in a beneficial product to prevent bovine mastitis as an alternative to antimicrobial agents. To optimize the production of biomass and mundticin CRL1656 by E. mundtii CRL1656, a complete 3 × 24 factorial design was applied. The effect of culture medium, initial pH, inoculum size, incubation temperature, and agitation conditions on biomass and bacteriocin production was evaluated simultaneously. Growth parameters were determined using the modified Gompertz model. A nonlinear model was used to estimate the effects of the variables on growth parameters. Bacteriocin production was analyzed using a linear mixed model. Optimal biomass and mundticin CRL1656 production by E. mundtii CRL1656 were obtained in different conditions. Maximal growth was recorded in autolyzed yeast, peptone, tryptone, Tween 80, and glucose or M17 broths, pH 6.5, 5.0% inoculum, 30°C, with agitation. However, bacteriocin titers were higher in autolyzed yeast, peptone, tryptone, Tween 80, and glucose or de Man-Rogosa-Sharpe (MRS) broths, pH 6.5, 30°C, both with or without agitation. Knowledge of the optimum conditions for growth and bacteriocin production of E. mundtii CRL1656 will allow the obtainment of high levels of biomass and mundticin CRL1656 as bioingredients of potential products to prevent bovine mastitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号