首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper reports a novel catalytic process for the destruction of chlorinated hydrocarbons. Based on CH4-steam reforming reactions, the approach gives high levels of conversion (5-nines possible) at high space velocities (2−3 × 105 h−1) and temperatures (650–750°C). Products comprise CO, CO2, H2 and HCl and no others were identified. Rapid deactivation by parallel thermal pyrolysis reactions occurs if high conversion is not maintained. The presence of Cl species poisons CH4-steam reforming and water gas shift activities, but the effect is only temporary and disappears when the Cl compounds are removed from the feed. Kinetic studies on methyl chloride have been carried out and show a Langmuir-Hinshelwood type behavior, from which a proposed mechanism involving dual-site surface dissociation is suggested. Comparisons with other common chlorocarbons show similarities, with the exception that 1,1,1-trichloroethane is very sensitive to thermal pyrolysis and gives faster deactivation.  相似文献   

2.
Past research in this laboratory on catalytic steam reforming of chlorinated hydrocarbons demonstrated extremely high levels of destruction (0.99999+) at 600–750 °C, with GHSVs as high as 2.5 × 105 h−1. Feasible operation was demonstrated with chlorinated alkanes, alkenes, aromatics and PCBs using Pt/γ-Al2O3 catalysts. The major mechanism for deactivation with trichloroethylene was sintering of the γ-Al2O3 support and encapsulation of Pt crystallites.

Evidence is presented here that ZrO2 is a superior support for steam reforming of trichloroethylene (TCE), due to its low acidity and ability to store oxygen. Formulations of 0.8 wt.% Pt/ZrO2 tested at a GHSV of 20,000 h−1 and a H2O/C ratio of 20 operated for 42 days at 750 °C, with only slight carbon deposits in the first 15% of the catalyst bed. No pyrolysis was found, and the product CO/CO2 ratio was at equilibrium, indicating high water gas shift activity with very low CO concentrations. Kinetic measurements revealed a pseudo-first order rate equation, sintering of the support and Pt was much less than with γ-Al2O3 supports, and no encapsulation was detected. Slow deactivation occurred due to deposition of catalytic carbon. This carbon was removed by combustion with air, and the rate of deactivation indicated the 42-day run would have lasted seven months.  相似文献   


3.
分别以碱及碱土金属、过渡金属以及稀土金属3种常见助剂类型,探讨了不同助剂对镍基催化剂催化生物质裂解及气化重整制氢催化活性、催化剂物化特性及催化剂失活特性的影响。添加碱金属组分后,生物质热解反应速率会大幅上升,生物质焦的水蒸气气化反应得到促进,并且达到最大热解速率所需的温度也有所降低,热解产物趋向于小分子量产物;过渡金属对生物质气化过程中生成焦油的催化裂解重整具有较好的催化活性;稀土元素对甲醇水蒸气重整等催化反应有着重要的作用,镍基催化剂中加入Ce和Pr能提高甲醇转化率、改善产气组分、提高H2的选择性。结合国内外的研究情况发现钴、镧等金属助剂有利于提升镍基催化剂重整制氢活性,催化剂积炭及表面活性颗粒的聚集是造成催化剂失活的主要原因。  相似文献   

4.
生物质催化热解获得生物油等高质产品是最有前途替代传统化石能源的方法之一,但在热解过程中存在着严重的催化剂失活问题,其中积炭是导致催化剂失活的最主要因素。本文对近年来生物质催化热解领域的催化剂积炭问题进行综述,重点介绍催化剂积炭失活原因及表征方法、积炭的影响因素分析(催化剂结构、催化剂酸性与反应温度)、抑制催化剂积炭的方法 (催化剂改性、高压反应条件等)以及积炭催化剂再生方法 (氧化灼烧再生、臭氧低温再生、非热等离子体再生等),并介绍了近年来新兴的微波催化热解技术对催化剂积炭的抑制和消除作用,然后针对该领域目前所面临的困难和发展方向进行展望,以期为生物质催化热解过程中催化剂积炭问题研究提供理论基础。  相似文献   

5.
A 1% Pd catalyst (38% dispersion) was prepared by impregnating a γ-alumina with palladium acetylacetonate dissolved in acetone. The behaviour of this catalyst in oxidation and steam reforming (SR) of propane was investigated. Temperature-programmed reactions of C3H8 with O2 or with O2 + H2O were carried out with different stoichiometric ratios S(S =[O2]/5[C3H8]). The conversion profiles of C3H8 for the reaction carried out in substoichiometry of O2 (S < 1) showed two discrete domains of conversion: oxidation at temperatures below 350°C and SR at temperatures above 350°C. The presence of steam in the inlet gases is not necessary for SR to occur: there is sufficient water produced in the oxidation to form H2 and carbon oxides by this reaction. Contrary to what was observed with Pt, an apparent deactivation between 310 and 385°C could be observed with Pd in oxidation. This is due to a reduction of PdOx into Pd0, which is much less active than the oxide in propane oxidation. Steam added to the reactants inhibits oxidation while it prevents the reduction of PdOx into Pd0. Compared to Pt and to Rh, Pd has a higher thermal resistance: no deactivation occurred after treatment up to 700°C and limited deactivation after treatment up to 900°C, provided that the catalyst is maintained in an oxygen-rich atmosphere during the cooling.  相似文献   

6.
The novelty of using pyrolysis oil in the steam-iron process to produce pure hydrogen is introduced. In this process, products of pyrolysis oil gasification are used to reduce iron oxides which are subsequently oxidized with steam, resulting in pure hydrogen. Two process alternatives are considered: (i) a once-through concept in which cheap iron oxide (in our case sintered pellets of natural iron ore, Fe2O3) is used in one cycle, before further processing in a blast furnace, and (ii) a continuous system, in which specially developed iron oxides (in our case an ammonia catalyst) are cycled between a reduction and oxidation reactor. By injecting pyrolysis oil in a fluidized bed filled with Fe3O4 at 800 °C, it has been shown that CO and H2 as well as coke by the gasification reactions contribute to the reduction. Experiments including a complete redox cycle with the ammonia catalyst have shown that a hydrogen production in the oxidation of 0.84 N m3/kg dry pyrolysis oil (LHV H2/LHV oil = 0.4) can be obtained when the conversion of iron oxides are low (1.0%). The gas produced in the reduction step under these conditions contains 38% of the heating value of the input and has an LHV of 7.8 MJ/N m3 gas product. Deactivation of the iron oxides has been observed by a decreasing reduction rate in subsequent redox cycles. BET and SEM analysis showed a decrease in surface area, which could partly explain the observed deactivation.  相似文献   

7.
《Fuel》2005,84(12-13):1612-1621
Steam gasification of nascent char from rapid or slow pyrolysis of a Victorian brown coal was performed at 1073–1173 K in a novel drop-tube/fixed-bed reactor, in which steam-containing gas was forced to pass through an extremely thin bed of nascent char particles at sufficiently high velocity and large flux. The nascent char underwent parallel reactions consisting of non-catalytic gasification and catalytic one. The non-catalytic gasification followed first-order kinetics with respect to the fraction of unconverted carbon, and the rate constant was hardly influenced by operating variables such as heating rate for the pyrolysis, total pressure and even period of isothermal heating between the pyrolysis and gasification. The overall activity of inherent catalysts, alkali and alkaline earth metallic species, diminished due to volatilization and intra-particle deactivation, both of which were induced by the gasification. As a result, the catalytic gasification took place within a limited range of the char conversion up to 60–80%. The initial catalyst activity and the kinetics of activity loss largely depended on the operating variables as above and also partial pressure of steam.  相似文献   

8.
Experiments with commercial askarals (Aroclors 1221, 1248 and 1254) have confirmed the feasibility of catalytic steam reforming as a method for destroying polychlorinated biphenyls (PCBs). Rhodium, platinum and nickel supported on γ-Al2O3 were used as catalysts. Process conditions were GHSV=10 000–17 000 h−1; H2O/C=10; and temperature=400–700°C. The Ni catalyst was the most active, giving conversions of 0.9999+ and stable operation at temperatures as low as 400°C. A slight amount of deactivation due to carbon formation was apparent at longer process times. This increased with the degree of chlorination of the PCBs. Carbon monoxide was the dominant carbon product, increasing with time due to poisoning of the water gas shift reaction by chloride species. Platinum achieved essentially the same results, except that higher temperatures (600°C) were necessary and deactivation occurred sooner. Examination of trace amounts of unconverted PCBs indicated a progressive dechlorination of the biphenyl ring.  相似文献   

9.
生物质热解催化剂失活的研究进展   总被引:1,自引:0,他引:1  
时宇 《工业催化》1992,28(9):1-7
生物质催化热解是实现生物质能源高效、高值化利用的有效手段。综述生物质催化热解过程中催化剂失活的过程及原因,从生物质热解催化剂的积炭失活、原料杂质的影响、催化剂的水热失活和负载型催化剂金属颗粒的烧结等进行阐述。对生物质热解催化剂的研究重点与方向进行展望。  相似文献   

10.
The deactivation of a nickel reforming catalyst during the upgrading of the producer gas obtained by gasification of lignocellulosic biomass was studied. The research involved several steps: the selective deactivation of the catalyst in a laboratory scale; the streaming of the catalyst with the producer gas of a downdraft and an oxygen/steam circulating fluidized bed (CFB) gasifier; and tests in a reformer placed in a slipstream of the CFB gasifier. The information obtained allowed to elucidate the catalyst deactivation mechanisms taking place during the reforming of the producer gas: physical deactivation by deposition of fine ashes, aerosol particulate or carbon; poisoning by H2S and HCl present in the gas phase and thermal sintering because of the high operation temperatures required to avoid the chemical deactivation. These physical and chemical effects depended on the composition of the biomass fuel.  相似文献   

11.
与现有乙苯直接脱氢工艺技术相比,CO2氧化乙苯脱氢工艺具有缓解直接脱氢热力学平衡限制、苯乙烯选择性高、能耗低和二氧化碳资源化利用等显著优势,有望成为一条从乙苯生产苯乙烯的绿色工艺路线。为此,在总结乙苯直接脱氢反应体系和现有工业技术特点、面临的问题和发展方向的基础上,本文较为全面地分析了CO2氧化乙苯脱氢的特点和反应机理,探讨了现有催化剂体系普遍快速失活的关键原因,表明高性能催化剂研究依然是推进CO2氧化乙苯脱氢工业化应用的关键。鉴于钒基氧化物催化剂表现出较高的活性,成为近年来CO2氧化乙苯脱氢相关研究关注的重点。为此,从钒物种含量及其聚集态结构、催化剂的氧化还原和酸碱性、催化剂表面积炭及其作用等角度,综合分析了活性中心结构、反应机理等方面的相关研究进展,认为孤立态V5+及其含量可能是决定钒基氧化物催化剂活性的关键,其稳定性主要取决于催化剂的氧化还原特性,而积炭对催化剂活性和稳定性的影响则与其组成和石墨化程度密切相关。基于上述认识,认为强化CO2的高效活化、抑制V5+的深度还原等是今后钒基氧化物催化剂研究的重点发展方向,而利用移动固定床或提升管反应器等进行工艺优化,对推进CO2氧化乙苯脱氢工业化应用具有重要的研究价值。  相似文献   

12.
We demonstrate that supported Sn/Ni alloy catalyst is more resistant to deactivation via carbon deposition than supported monometallic Ni catalyst in steam reforming of isooctane at moderate steam to carbon ratios, irrespective of the average size of metal particles and the metal loading. The experiments were performed for average diameters of catalytic particles ranging from 30 to 500 nm and for the loading of active material ranging from 15 to 44 wt% with respect to the total mass of catalyst. The steam reforming reactions were performed at conditions that are consistent with typical solid oxide fuel cell (SOFC) operating conditions. DFT calculations show that the reasons for the enhanced carbon-tolerance of Sn/Ni compared to monometallic Ni are high propensity of Sn/Ni to oxidize carbon and lower driving force to form carbon deposits on low-coordinated metal sites.  相似文献   

13.
以全钢型废旧轮胎为原料,通过热解、活化、浸渍、焙烧的流程制备了三种热解炭催化剂,分别为轮胎热解炭(Raw char)、轮胎热解活性炭(AC)和负载Zn的活性炭(Zn/AC)。采用N2吸/脱附、SEM、EDS、XRD等表征方法对催化剂进行了一系列表征和分析,发现CO2/H2O活化可显著提高催化剂BET比表面积,最高可达380 m2·g-1,有效改善催化剂表面结构性质,同时浸渍法使催化剂表面负载大量ZnO活性位。对三种催化剂在纤维素热解焦油重整制氢过程中的催化性能进行了研究,发现Raw char(600℃)具有最佳催化效果,相较于空白组(500℃),热解气中H2体积分数提高了12.4%,达到19.3%,其次为Zn/AC(500℃)组的17.8%,实现了低温下催化纤维素焦油热解制得高产率H2。  相似文献   

14.
Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2.  相似文献   

15.
Ni/Ce–ZrO2 showed good methane steam reforming performance in term of stability toward the deactivation by carbon deposition. It was first observed that the catalyst with Ce/Zr ratio of 3/1 showed the best activity among Ni/Ce–ZrO2 samples with the Ce/Zr ratios of 1/0, 1/1, 1/3, and 3/1. Temperature-programmed oxidation (TPO) experiments indicated the excellent resistance toward carbon formation for this catalyst, compared to conventional Ni/Al2O3; the requirement of inlet H2O/CH4 to operate without the formation of carbon species is much lower. These benefits are related to the high oxygen storage capacity (OSC) of Ce–ZrO2. During the steam reforming process, in addition to the reactions on Ni surface (*), the redox reactions between the gaseous components present in the system and the lattice oxygen (Ox) on Ce–ZrO2 surface also take place. Among these reactions, the redox reactions between the high carbon formation potential compounds (CH4, CHx-*n and CO) and the lattice oxygen (Ox) can prevent the formation of carbon species from the methane decomposition and Boudard reactions, even at low inlet H2O/CH4 ratio (1.0/1.0).

Regarding the intrinsic kinetic studies in the present work, the reaction order in methane over Ni/Ce–ZrO2 was observed to be approximately 1.0 in all conditions. The dependence of steam on the rate was non-monotonic, whereas addition of oxygen as an autothermal reforming promoted the rate but reduced CO and H2 production selectivities. The addition of a small amount of hydrogen increased the conversion of methane, however, this positive effect became less pronounced and the methane conversion was eventually inhibited when high hydrogen concentration was added. Ni/Ce–ZrO2 showed significantly stronger negative impact of hydrogen than Ni/Al2O3. The redox mechanism on ceria proposed by Otsuka et al. [K. Otsuka, T. Ushiyama, I. Yamanaka, Chem. Lett. (1993) 1517; K. Otsuka, M. Hatano, A. Morikawa, J. Catal. 79 (1983) 493; K. Otsuka, M. Hatano, A. Morikawa, Inorg. Chim. Acta 109 (1985) 193] can explain this high inhibition.  相似文献   


16.
Nickel oxide on alumina aerogel catalysts are known to convert propylene into acrylonitrile through the interaction with nitric oxide (nitroxidation). For a NiO/Al2O3 aerogel catalyst, with Ni:Al ratio 1:1, the activity decreases by about 20% over a 3-h run. Simultaneously, a carbon deposit is observed on the catalyst which results from the cracking of hydrocarbons and from the Boudouard reaction of generated carbon monoxide. Addition of water vapor into the feed slows down the deactivation process by promoting the water—gas shift reaction without affecting the activity. Addition of a basic component like magnesia (0.2 Mg:0.8 Ni) to the NiO/Al2O3 aerogel catalyst also enhances the stability by retarding the cracking reactions. Addition of iron oxide (0.2 Fe:0.8 Ni) to the NiO/Al2O3 aerogel catalyst, in order to favor the water-gas shift reaction, results in a catalyst which is inactive for nitroxidation but promotes cracking and steam-reforming reactions, providing thus more insight into the deactivation process.  相似文献   

17.
We have been developed novel catalysts for gasification of biomass with much higher energy efficiency than conventional methods (non-catalyst, dolomite, commercial steam reforming Ni catalyst). From the result of the gasification of cellulose over novel Rh/CeO2/SiO2 catalysts, it is found that the gasification process consists of the reforming of tar and the combustion of solid carbon. We also tested novel Rh/CeO2/SiO2 in the gasification with air, pyrogasification, and steam reforming of cedar wood. As a result, Rh/CeO2/SiO2 gave higher yield of syngas than the conventional steam reforming Ni catalyst. Furthermore, we compared the performance between single and dual bed reactors. Single bed reactor was effective in the gasification of cedar, however, it was not suitable for the gasification of rice straw since a rapid deactivation was observed. Gasification of rice straw, jute stick, baggase using the fluidized dual-bed reactor and Rh/CeO2/SiO2 was also investigated. Especially, the catalyst stability in the gasification of rice straw clearly was enhanced by using the fluidized dual bed reactor.  相似文献   

18.
Atul Sharma  Kouichi Miura 《Fuel》2006,85(2):179-184
A novel Ni/carbon catalyst recently developed by the authors was used to gasify organic compounds dissolved in the wastewater with TOC concentration from 0.2 to 2%. The process removes the organic compounds by gasifying them into high calorific gases like methane and hydrogen. The investigations were focused on the efficiency of the Ni/carbon catalyst in terms of carbon conversion, conversion of big organic molecules, and catalyst deactivation due to sintering. The preliminary results showed that up to 99% carbon conversion can be achieved at 360 °C, and 20 MPa. A conversion mechanism was suggested which consists of: first, decomposition of big molecules to small molecules on the metal surface, steam gasification of small molecules to produce CO and H2 followed by CO methanation and CO shift reaction to produce CH4 and CO2. The catalyst was found to be highly active and stable and no sintering was observed even after 100 h of reaction time.  相似文献   

19.
Factors controlling the product ratio of CO2/(CO+CO2) and methods for inhibiting deactivation of catalyst for steam reforming of gasoline were studied. Syngas (H2+CO) as major product was produced on Ni-Mo/Al2O3 and the major product on Ni-Re/Al2O3 was H2 and CO2 at the same reaction conditions. Hydrogen with a high CO2/(CO+CO2) ratio of about 92% was produced by coupling reaction of steam reforming and water gas shift on Ni-Re/Al2O3 catalyst at 805 K. The multifunctional activity of the bimetallic catalyst of Ni-Re/Al2O3 and the suitable reaction temperature were of crucial significance for the coupling reaction. Although no deactivation could be observed on both Ni-Mo/Al2O3 and Ni-Re/Al2O3 catalysts for steam reforming of sulfur-free fuels in about 200 h of time on stream, the activity and sulfur-tolerance of Ni-Re/Al2O3 was much better than the values of Ni-Mo/Al2O3 for steam reforming of sulfur-containing fuels because of the unique role of rhenium in the Ni-Re catalyst. The unique role of rhenium in Ni-Re catalyst was mainly because of alloying of rhenium with nickel to form bimetallic Ni-Re sites and interaction of rhenium with sulfur to form S-Re binds. The sulfur-tolerance of Ni-Re/Al2O3 for steam reforming of sulfur-containing gasoline was improved further by addition of a small amount of ZSM-5. The activity and sulfur-tolerance of Ni-Mo/Al2O3 was also enhanced by the addition of ZSM-5.  相似文献   

20.
The hydrodechlorination of 1,2-dichloroethane was studied over a Rh/SiO2 catalyst. The catalyst deactivated with use; only part of the deactivation was reversible. The reversible deactivation could be quantitatively accounted for by assuming quasi-equilibrium between surface chlorine and gas phase HCl. An empirical power-law rate expression was found that adequately described the kinetics when used in combination with this assumption of quasi-equilibrium. Experimental results as well as simulation showed that a membrane reactor can reduce the degree of catalyst deactivation by selective removal of HCl. The membrane reactor can also lessen deactivation through dilution of the reaction zone. In this study, using a porous membrane, the predominant effect is one of dilution, not selective HCl removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号