首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adult female bolas spider Mastophora hutchinsoni feeds exclusively on attracted males of a few moth species. This exclusivity and the behavior of the approaching moths suggest that the spider aggressively mimics the sex pheromones of its prey species. Males of the bristly cutworm, Lacinipolia renigera, are a major prey of this spider, accounting for about two thirds of the biomass of prey consumed. Female bristly cutworms produce a pheromone blend consisting of (Z)-9-tetradecenyl acetate (Z9–14 : Ac) and (Z,E)-9,12-tetradecenyl acetate (ZE-9,12–14 : Ac). To determine if M. hutchinsoni females mimic the sex pheromone components and blend ratio of L. renigera, we collected volatiles from hunting adult female spiders and analyzed them with gas chromatography–electroantennographic detection (GC-EAD) and gas chromatography–mass spectrometry (GC-MS). GC-EAD analysis of volatile collections, using a male bristly cutworm antenna as the detector and two capillary columns of different polarities, revealed the presence of peaks with retention times (R ts) identical to Z9–14 : Ac and ZE-9,12– 14 : Ac. The mass spectrum of a peak with R t of Z9–14 : Ac was identical to the mass spectrum of the synthetic equivalent. There was an insufficient quantity of the compound with R t of ZE-9,12–14 : Ac to get a full spectrum, but selective detection of ions at m/z 61 and 192 at the correct R t supported the identification. On average, the blend collected from spiders contained 54.8 ± 20.8 (SE) pg/min of Z9–14 : Ac and 2.5 ± 1.7 (SE) pg/min of ZE-9,12–14 : Ac. The latter, on average, comprised 2.6 ± 0.7% of the total, which is similar to the blend ratio emitted by bristly cutworm females. Our results indicate that the adult female M. hutchinsoni produces an allomone blend that mimics not only the composition, but also the blend ratio, of the sex pheromone of a major prey species.  相似文献   

2.
Extracts of sex pheromone glands obtained from females ofPloida interpunctella contained detectable amounts of (Z,E,)-9,12-tetradecadien-1-ol acetate (Z9,E12–14:Ac) and (Z,E.)-9,12-tetradecadien-1-ol (Z9,E12–14:OH) 4 hr prior to the first scotophase after adult emergence. The amount of pheromone increased during the first 4 hr of the scotophase and then declined to low levels during the subsequent photophase. Decapitation of females immediately after emergence, prior to expansion of the wings, inhibited production of pheromone during the subsequent 48 hr. Injection of extracts of the heads of 1-day-old females ofP. interpunctella of partially purified extracts of the cephalic ganglia of females of the corn earworm moth into decapitated females stimulated production of bothZ9,E12–14:Ac andZ9,E12–14:OH as well as production of (Z,E)-9,12-tetradecadienal (Z9,E12–14:Al). This aldehyde was subsequently identified from extracts of pheromone glands obtained from naturally calling females as well as from volatiles emitted by calling females. Studies on the terminal steps in biosynthesis of the pheromone showed thatZ9,E12–14:OH was produced from the corresponding acetate and thatZ9,E12–14:Al was produced from the alcohol via the action of an oxidase(s).  相似文献   

3.
(Z,E)-9,11-tetradecadienal (Z9,E11–14: Ald; 11%), (Z,E)-9,11,13-tetradecatrienal (Z9,E11, 13–14: Ald; 67%), (Z,E)-9,11-tetradecadienyl acetate (Z9,E11–14: Ac, 5.5%), and (Z,E)-9,11,13-tetradecatrienyl acetate (Z9,E11,13–14: Ac; 16.5%) were identified in the extracts of female pheromone glands ofStenoma cecropia (Lepidoptera: Elachistidae). From electroantennograms and single sensillum recordings, receptors toZ9,E11,13–14:Ald andZ9,E11–14: Ald were found on male antenna. Behavioral data were obtained from olfactometric tests in the laboratory and field trapping experiments in Colombia. It appeared that a blend ofZ9,E11,13–14:Ald (83%) andZ9,E11–14:Ald (17%) was attractive to males. These aldehydes are assumed to be components of the sex pheromone ofS. cecropia, whereas the acetates found in gland extracts might be precursors of the pheromone.  相似文献   

4.
Sex Pheromone of the Cranberry Blossom Worm, Epiglaea apiata   总被引:2,自引:0,他引:2  
The cranberry blossom worm, Epiglaea apiata (Grote) (Lepidoptera: Noctuidae), is a major pest of cranberries in New Jersey. The female sexpheromone of this moth was identified as a blend of (Z)-9-hexadecenyl acetate (Z9-16:Ac), (Z)-9-tetradecenyl acetate (Z9-14:Ac), and tetradecyl acetate (14:Ac) by gas chromatographic–electroantennographic detection and gas chromatography–mass spectrometry. The ratio of the components in extracts of the female pheromone gland was determined to be 65 : 2 : 33 of the Z9-16:Ac, Z9-14:Ac, and 14:Ac, respectively. The double bond positions of the pheromone components were confirmed by dimethyl disulfide derivatization. In addition to the above three components, a mixture of C4–C10 aliphatic acids was present in both gland extracts and effluvia collections, and the acids elicited significant EAD responses from male moth antennae. However, addition of the C4–C10 aliphatic acids to the pheromone blend did not significantly increase trap captures. Three-hundred- and 1000-g doses of a synthetic blend containing Z9-16:Ac, Z9-14:Ac, and 14:Ac (65 : 2 : 33), on a rubber septum were more attractive to males than lower doses.  相似文献   

5.
Electroantennogram profiles of saturated and monounsaturated 12-, 14-, and 16-carbon acetates, and 12- and 14-carbon alcohols implicated (Z)-9-tetradecen-1-ol acetate (Z9-14: Ac) as a component of the female sex pheromone ofHulstia undulatella (Clemens). Gas chromatography-mass spectrometric analysis of extract of the female sex pheromone glands showed the presence of Z9-14:Ac (8.5 ng/female), (Z)-9-tetradecen-1-ol (Z9-14:OH), and (Z)-11-hexadecen-1-ol acetate (Z11-16:Ac) in a ratio of 100421, respectively. In tests in sugar beet fields, Z9-14:Ac alone produced some trap catch. Addition of Z9-14: OH did not increase catch while addition of Z11-16:Ac eliminated catch, but addition of both Z9-14:OH and Z11-16: Ac increased catch sevenfold. A combination of Z9-14: OH and Z11-16: Ac without Z9-14: Ac did not produce trap catch. A lure of 200 g Z9-14:Ac+16 g Z9-14:OH+42 g Z11-16:Ac is suggested for use in monitoring traps.Lepidoptera: Pyralidae: Phycitinae.  相似文献   

6.
The behavioral responses of Lobesia botrana males to calling females, pheromone gland extracts, and synthetic sex pheromones were recorded in a wind tunnel. Gland extracts and synthetic pheromones were released from a pheromone evaporator. The numbers of males reaching the source and their flight tracks in response to calling females and pheromone gland extracts were compared to those of synthetic blends. Upwind flights to natural sex pheromone were straighter and faster than to a three-component blend of (E)-7,(Z)-9-dodecadienyl acetate (E7,Z9–12:Ac), (E)-7,(Z)-9-dodecadien-1-ol (E7,Z9–12:OH), and (Z)-9-docecenyl acetate (Z9–12:Ac) (100:20:5). The optimum ratio of E7,Z9–12:OH and Z9–12:Ac to E7,Z9–12:Ac was found to be 5% and 1%, respectively. An additional seven compounds identified in the sex pheromone gland were investigated for their biological activity. Two unsaturated acetates, i.e., (E)-9-dodecenyl acetate (E9–12:Ac) and 11-dodecenyl acetate (11–12:Ac), increased the number of males reaching the source as well as straightness, linear velocity, and decreased the track angle of upwind flight. Optimum response was obtained by releasing 10 pg/min E7,Z9–12:Ac in a mixture with 0.5 pg/min E7,Z9–12:OH, 0.1 pg/min Z9–12:Ac, 0.1 pg/min E9– 12:Ac and 1 pg/min 11-12–Ac. The saturated acetates previously identified in the female glands were biologically inactive.  相似文献   

7.
The calling behavior and pheromone titer in the female smaller tea tortrix moth,Adoxophyes sp., were investigated under a 1410-hr light-dark photoperiod. Quantitative gas chromatographic analysis of ovipositor extract for (Z)-11-tetradecenyl acetate (Z11–14Ac) and (Z)-9-tetradecenyl acetate (Z9–14Ac), the major pheromone components of this species, obtained on the third day postemergence, indicated that extractable amounts of sex pheromone were present throughout the period of observation. Maximal pheromone titer and calling activity was reached at 8 and 10 hr after onset of scotophase, respectively. The ratio ofZ11–14Ac toZ9–14Ac through the 24-hr period varied significantly. The significance of the sex pheromone component ratio variation on the attraction of males was tested in a field experiment. The ratio of males trapped by the most attractive blend versus the least attractive one was 2.16.  相似文献   

8.
The following compounds and (approximate ratios) were identified in sex pheromone gland extracts of femaleAcrobasis vaccinii Riley by comparison of gas chromatography-mass spectrometric traces with those of synthetic standards: (E,Z)-, (Z,E)-, (Z,Z), and (E,E)-8, 10-pentadecadien-l-ol acetates (100:1:2:12), a dodecen-l-ol acetate (8), (Z)-8-, (Z)-9-, and (E)-9-pentadecen-l-ol acetates (3:23:4), two heptadecen-l-ol acetates (4:4), tetradecyl, pentadecyl, hexadecyl, and heptadecyl acetates (3:15:10:8), dodecan-l-ol (6), tetradecan-l-ol (5), and hexadecan-l-ol (23). The amount of (E,Z)-8, 10-pentadecadien-l-ol acetate (E8,Z10–15:Ac) in the extract was about 0.5 ng/female. Electroantennographic analysis of gas chromatographic fractions of female sex pheromone gland extract showed that the fraction containingE8,Z10–15:Ac elicited the greatest response. Alone,E8,Z10–15:Ac failed to elicit upwind flight of males in flight-tunnel tests, and traps baited with it did not catch males in field experiments. WhenE8,Z10–15:Ac was combined with (E)-9-pentadecen-l-ol acetate (100:4), male upwind flight response in flight-tunnel tests was equivalent to those obtained with extract of female sex pheromone glands (synthetic, 62%; natural, 51%), but the percent of males flying upwind that contacted the source was lower (synthetic, 47%; natural, 88%). The lower percent of source contact elicited by the synthetic pheromone could be a result of the difference in isomer ratios of 8,10–15:Ac in the natural and synthetic pheromone or could indicate that the synthetic pheromone is incomplete. Traps baited with the 100:4 combination caught large numbers of males in field experiments.  相似文献   

9.
By means of gas chromatography with electroantennographic detection (GC-EAD), gas chromatography–mass spectrometry (GC-MS), and a series of bioassays, (Z)-11-tetradecenyl acetate (Z11–14:OAc) and (E)-11-tetradecenyl acetate (E11–14:OAc) at a ratio of 100:3 were identified as the female sex pheromone of the adzuki bean borer,Ostrinia scapulalis. The average amounts ofZ11–14: OAc andE11–14:OAc in a single sex pheromone gland were 6.6 ± 2.4 ng and 0.2 ± 0.1 ng, respectively. In a wind-tunnel bioassay, the binary blend ofZ11- andE11–14:OAc elicited almost the same male behavioral responses as did virgin females and sex pheromone gland extract. In field trapping experiments, rubber septa impregnated with the binary blend (50 g/septum) attracted more males than virgin females. The sex pheromone ofO. scapulalis thus turned out to be similar to that of theZ-type European corn borer,O. nubilalis, in both components and their ratio.  相似文献   

10.
Heritability of variation in male pheromone response by pink bollworm moths,Pectinophora gossypiella (Saunders), was examined using a still-air, wing-fanning bioassay. Heritability (±SE) of overall responsiveness, as measured by the mean duration of wing fanning to the blend of pheromone components produced by females [4456 ratio of (Z, E)- to (Z, Z)-7,11-hexadecadienyl acetate], was 0.385 ± 0.095. Heritabilities of wingfanning duration to blends with 25 and 65%Z, E isomer were 0.377 ± 0.113 and –0.145 ± 0.103, respectively. These findings indicate an asymmetry in the genetic component of variation in response to pheromone blends with high and low proportions of theZ, E isomer. An index of response specificity for individual males was developed based on the response to an off-blend (either 25 or 65%Z, E isomer) relative to the response to the 44%Z, E blend. Heritabilities of response specificity were 0.117 ± 0.059 and –0.043 ± 0.067 for the 25 and 65%Z, E blends, respectively.  相似文献   

11.
Extracts of female sex pheromone gland of the carpenterworm moth, Holcocerus hippophaecolus Hua, a pest of sandthorn, Hippophae rhamnoides L. were found to contain (E)-3-tetradecenyl acetate (E3-14:Ac), (Z)-3-tetradecenyl acetate (Z3-14:Ac), (Z)-7-tetradecenyl acetate (Z7-14:Ac), the corresponding alcohols, E3-14:OH, Z3-14:OH, Z7-14:OH, and (E)-9-tetradecenyl acetate (E9-14:Ac). Electroantennographic (EAG) analysis of these chemicals and their analogs demonstrated that Z7-14:Ac elicited the largest male EAG response, followed by E3-14:Ac. In field trials, traps baited with either Z7-14:Ac or E3-14:Ac alone caught no male moths, whereas a combination of these two components in a 1:1 ratio caught more males than control traps. Addition of Z7-14:OH and Z3-14:OH or the alcohols plus E9-14:Ac did not enhance trap catches. We conclude that the sex pheromone of H. hippophaecolusis composed of Z7-14:Ac and E3-14:Ac. Optimal ratios and doses of these two components, and the possible role of other minor components, remain to be determined.  相似文献   

12.
Female smaller tea tortrix mothsAdoxophyes sp. (Lepidoptera: Tortricidae), which initiated calling at 1, 2, or 3 days old, respectively, were analyzed individually for (Z)-11-tetradecenyl acetate (Z11-14:OAc) and (Z)-9-tetradecenyl acetate (Z9–14: OAc) in the pheromone gland via GLC. Among different age groups, broad and similar distributions were found for pheromone quantity (¯X=58.6±52.9 ng/female; range 1.3–219.8 ng/female). The ratio of the two pheromone components averaged 6535 but ranged from 8416 to 4060. The significance of the pheromone blend variation to the attraction of males was tested in a field experiment. The ratio of males trapped by the most attractive blend versus the least attractive one was 2.2.  相似文献   

13.
Twelve products related to the sex pheromone main components (Z)-9- and (Z)-11-tetradecenyl acetate (Z9–14Ac andZ11–14Ac, respectively), were identified in female pheromone gland extracts of the laboratory-reared summerfruit tortrix moth,Adoxophyes orana F.v R. These are the geometric isomers and the alcohols of the main components, (Z)-9-dodecenyl acetate, (Z)-11-hexadecenyl acetate, and saturated acetates of 12–22 carbons. The ratio ofZ9–14Ac toZ11–14Ac in individuals varied from 3.51 to 111 with an average of 6.2; their total added up to 462 ng/female with an average of 182 ng for 2- to 7-day-old individuals. No qualitative or quantitative differences were observed between laboratory and field insects.Z9–14Ac,Z11–14Ac and the corresponding alcohols were also found in female effluvia. Addition of either of the two alcohols to a blend of the two acetates augmented trap catch in the field. The same was true for (Z)-9,(E)-12-tetradecadienyl acetate which was not detected in gland extracts.  相似文献   

14.
Several studies have shown intraspecific geographical variation in the composition of sex pheromones. Pheromone lures from North America and Europe were not effective against the fall armyworm Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) in Brazil, so we examined the composition of the sex pheromone produced by females from Brazilian populations. Virgin female gland extracts contained (Z)-7-dodecenyl acetate (Z7-12:Ac), (E)-7-dodecenyl acetate (E7-12:Ac), dodecyl acetate, (Z)-9-dodecenyl acetate, (Z)-9-tetradecenyl acetate (Z9-14:Ac), (Z)-10-tetradecenyl acetate, tetradecyl acetate/(Z)-11-tetradecenyl acetate (Z11-16:Ac), and (Z)-11-hexadecenyl acetate. The relative proportions of each acetate were 0.8:1.2:0.6:traces:82.8:0.3:1.5:12.9, respectively. This is the first time that E7-12:Ac has been reported from the pheromone gland of S. frugiperda. Only three compounds, Z9-14:Ac, Z7-12:Ac, and E7-12:Ac, elicited antennal responses, and there were no differences in catch between traps baited with either Z7-12:Ac + Z9-14:Ac or Z7-12:Ac + Z9-14:Ac + Z11-16:Ac blends. However, the Z7-12:Ac + Z9-14:Ac + E7-12:Ac blend was significantly better than Z7-12:Ac + Z9-14:Ac, indicating that E7-12:Ac is an active component in the sex pheromone of the Brazilian populations of S. frugiperda.  相似文献   

15.
Individual analysis of the female sex pheromone of the adzuki bean borer, Ostrinia scapulalis, has shown that the sex pheromone of this species comprised (E)-11-tetradecenyl acetate (E11–14:OAc) and (Z)-11-tetradecenyl acetate (Z11–14:OAc) at variable blend ratios. The pheromone blend could be tentatively categorized into three types with respect to the proportion of E11–14:OAc: E type (94–100%, median 99.2%), Z type (0–16%, median 3.0%), and intermediate type (I type, 48–85%, median 63.7%). In addition to the identity of components, the blend ratios in the three types were similar to those of the E strain, Z strain, and hybrid of the European corn borer, O. nubilalis, respectively. This finding suggests that two closely related but morphologically distinct species, O. scapulalis and O. nubilalis, share almost the same sex pheromone communication systems. The significance of this similarity in the two sibling species is discussed.  相似文献   

16.
The analyses of virgin female sex pheromone gland extracts by gas chromatography (GC), GC-electroantennographic detection (GC-EAD) and GC-mass spectrometry (GC-MS) followed by field-trapping experiments, have identified (E)-9-tetradecenyl acetate (E9–14:Ac) as the primary sex pheromone component of the spruce budmoth,Zeiraphera canadensis. Dosages of 1.0–100.0 g ofE9–14:Ac impregnated in rubber septa provide effective trap baits.Lepidoptera: Tortricidae: Eucosminae.  相似文献   

17.
S. latifascia andS. descoinsi are closely related species that occur sympatrically over limited areas in French Guiana. We examined allopatric populations,S. latifascia originating from Barbados andS. descoinsi from French Guiana. Studies on nocturnal activity cycles showed temporal partitioning of female calling behavior, male sexual activity, and mating behavior.S. descoinsi were sexually active in the first half of the scotophase whereasS. latifascia were sexually active in the second half. Seven compounds (Z9–14: Ac,Z9,E12–14: Ac,Z11–16: Ac,E9,E12–14: Ac,Z9–14: Ald,Z9,E11–14: Ac andZ11–14: Ac) were identified in females of bothS. latifascia andS. descoinsi extracts.Z9–14: Ac was a main pheromone component for the two species. The major difference between the pheromones ofS. latifascia andS. descoinsi was the proportion ofZ9,E12–14: Ac in the extracts: 7% forS. latifascia and 42% forS. descoinsi. The proportion ofZ9,E12–14: Ac relative to the sum ofZ9–14: Ac andZ9,E12–14: Ac in individual gland extracts was 4±1% (mean ± standard deviation) forS. latifascia and 44.8±6% forS. descoinsi. Electrophysiological studies showed no major differences between species in the morphology and physiology of the pheromone receptors of males. Receptors were identified forZ9–14: Ac andZ9,E12–14: Ac, but no receptor was found for the other compounds. In the wind tunnel, synthetic blends withZ9–14: Ac andZ9,E12–14: Ac gave the same behavioral responses as conspecific female extracts for the males of the two species. Some cross-attraction was observed with synthetic blends and female extracts. Nethertheless, previous field trapping experiments in French Guiana were species-specific and suggested differences in the attractivity of males. In the laboratory,S. latifascia andS. descoinsi could hybridize in both reciprocal crosses. FemaleS. descoinsi × maleS. latifascia mating rate was significantly lower than for the reciprocal cross, and 26.7% of femaleS. descoinsi could not separate from maleS. latifascia after mating. These copulatory problems may involve genital incompatibilities between males and females. Several barriers against interbreeding betweenS. latifascia andS. descoinsi seem to combine including differences in nocturnal activity cycles, pheromone differences, and genital barriers. The study of sympatric populations will be necessary to define the role of sex pheromones in the reproductive isolation ofS. latifascia andS. descoinsi.  相似文献   

18.
Both calling behavior and titer of (Z)-9-hexadecenal (Z9-16: Al), the major sex pheromone component ofHelicoverpa assulta, in pheromone glands showed distinct diel periodicity, and these two were synchronous. Calling was most actively performed and the pheromone titer reached a maximum from 2 to 6 h after lights-off. During photophase, no calling was shown and only a relatively small amount of Z9-16:A1 was detected. However, there was a time lag of a few days between peak calling activity and maximum pheromone titer. The pheromone titer was maximal from age 1 day to age 5 days and thereafter decreased while calling was most actively performed after age 3 days. Titers of three minor components, hexadecenal, (Z)-11-hexadecenal, and (Z)-9-hexadecenyl acetate, showed similar daily fluctuation patterns to that of Z9-16:Al, but relative to the titer of Z9-16:Al, the titer of the two aldehyde components remained relatively constant whereas that ofZ9-16:Ac increased in the late scotophase.  相似文献   

19.
Synthetic sex pheromone of the pea mothCydia nigricana, (E,E)-8,10-dodecadien-1-yl acetate (E8,E10–12: Ac), was applied in polyethylene dispensers at a rate of 30 g/ha and 600 dispensers/ha in a 0.6-ha pea field. The release rate ofE8,E10–12: Ac was 140 mg/ha/day after six days, and 82 mg/ha/day after 20 days. Aerial concentrations ofE8,E10–12: Ac, as measured by a portable EAG apparatus, ranged from 2 ± 2 to 7 ± 3 ng/m3. The antennal signal was high and rather constant within pea canopy, but was lower and fluctuated strongly above canopy. Initially, >99% isomerically pureE8,E10–12: Ac was released, and male moths were attracted to dispensers. After nine days, isomeric blend composition had equilibrated to approx. 92%E8,E10–12: Ac and 8% of the inhibitory isomersE,Z-,Z,E-, andZ8,Z10–12: Ac. Males were then repelled from the pheromone-permeated field. Traps baited with 100 µgE8,E10–12: Ac caught 258 ± 133C. nigricana males/trap in the control, but no males at all in the disruption field.  相似文献   

20.
The sex pheromone of the citrus fruit borer Ecdytolopha aurantiana has been identified by gas chromatography coupled to an electroantennographic detector (GC-EAD). The electron impact mass spectral (EI-MS) fragmentation of the major EAD-active peak gave identifying features for a monounsaturated acetate. Further analyses by chemical ionization mass spectrometry (CI-MS), vapor-phase infrared spectroscopy (GC-IR), along with chemical derivatization (DMDS reaction), led to full characterization of the major component as (E)-8-dodecenyl acetate (E8–12 : Ac). The second constituent was identified as the related alcohol, (E)-8-dodecenol (E8–12 : OH). The two compounds were indistinguishable from the authentic synthetic standards in chemical and EAD analyses. Samples of the two compounds were obtained by a facile synthesis utilizing lithium chemistry. Field tests showed that captures in traps baited with a mixture of E8–12 : Ac and E8–12 : OH at 100 : 1 and 10 : 1 ratios were not significantly different from the catches in traps having two virgin females. Dosage tests showed better performance of traps baited with 1 mg than those with 0.1 mg of the pheromone blend, either in 100 : 1 or 10 : 1 ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号