首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
研究了管材专用无规共聚聚丙烯(PPR)的结晶温度和等温结晶行为,利用Avrami方程对等温结晶过程和动力学进行了分析。结果表明:北欧化工公司的PPR1具有更高的结晶温度、结晶度以及更快的结晶速率。同一结晶温度条件下,国产PPR3的结晶度达到一半的时间略高于其他PPR。利用Hoffman-Lauritzen结晶动力学理论计算得到了PPR的成核常数和结晶生长时大分子在垂直于分子链方向的折叠表面自由能(σe),与其他试样相比,PPR1的σe最低,PPR3的σe最高,结晶速率最慢。通过偏光显微镜照片可以发现,PPR1的球晶尺寸最小,PPR3和PPR4的球晶较大,球晶尺寸比较接近。  相似文献   

2.
应用粘弹谱仪考察了不同摩尔质量的聚酯(PET、PBT、PBT/PET)的动态力学性能,结果表明摩尔质量增大将提高其模量,但亦导致结晶速度变慢,使测得的模量反而比摩尔质量较低的试样小.  相似文献   

3.
对添加稀土β成核剂的无规共聚聚丙烯(PPR)非等温结晶动力学进行了研究,采用修正Avrami方程的Jeziorny法和莫志深法对差示扫描量热法(DSC)所得的数据进行处理。结果表明,纯PPR的非等温结晶行为适合Jeziorny法和莫志深法,同时莫志深法可以很好地描述β成核剂改性PPR(βPPR)的非等温结晶行为,但Jeziomy法不能。添加0.05%(质量分数)的β成核剂就可以起到成核作用,提高PPR的结晶度,并使得PPR的结晶温度升高;但是在相同的冷却速率下,纯PPR达到一半结晶度所需的时间(t_(1/2))和结晶峰半峰宽(△W)比βPPR的值要小;同时达到相同的结晶度βPPR所需的冷却速率要大于纯PPR的,这说明β成核剂的加入降低了PPR的结晶速率。  相似文献   

4.
戴厚益  陈琪芳  杨华 《塑料工业》2004,32(10):45-46,49
通过高温凝胶渗透色谱(GPC),采用普适校准法对线性聚苯硫醚树脂(PPS)的摩尔质量、多分散系数以及摩尔质量分布进行测定。结果表明,此法不仅数据准确、可靠、重现性好;而且根据绘出的图谱可以直观地观察到各个摩尔质量段的含量和摩尔质量的情况,这对研究树脂的机械性能、流动性和成型加工性等有着极其重要的意义。  相似文献   

5.
稀土β成核剂改性PPR力学与结晶性能研究   总被引:1,自引:0,他引:1  
研究了稀土β成核(剂WBG-1改)性无规共聚聚丙烯(PPR的)力学行为,并利用热台偏光显微镜和广角X射线衍射观察和分析了WBG-1改性PPR的晶型和结晶形态。结果表明:随着WBG-1用量的增加,PPR的拉伸强度、弯曲强度和弯曲模量呈现先降后升趋势,而其冲击强度和断裂伸长率呈现先升后降的趋势,且在WBG-1用量为0.3%时均达到最大值;添加WBG-1后改,性PPR的β晶含量和结晶速度明显提高。  相似文献   

6.
一种新型复合成核剂对PET结晶性能和摩尔质量的影响   总被引:2,自引:1,他引:2  
采用双螺杆挤出机,以熔融挤出法制备了含不同结晶成核剂的聚对苯二甲酸乙二醇酯(PET)样品.利用差示扫描昔热法(DSC)、黏度法研究了成核剂对PET结晶行为和摩尔质量的影响,并对比了复合成核剂(苯甲酸钠/酯交换剂A)与常用成核剂苯甲酸钠及乙烯/甲基丙烯酸共聚物的离聚物(Surlyn)对PET结晶行为和摩尔质量的影响.研究结果表明:在成核能力方面,复合成核剂的效果优于苯甲酸钠和Surlyn;同时,复合成核剂的加入还能有效地降低PET摩尔质馈的损失程度,加入复合成核剂的PET摩尔质量明显高于加入苯甲酸钠的PET样品,与加入Surlyn成核剂的PET样品摩尔质量接近.  相似文献   

7.
采用逐步降温和控制沉淀剂用量的方法对HDPE进行溶液分级,以期制备具有特定结晶度的PE标准物质,在特定的分级工艺下,级分2结晶度的均值和扩展不确定度分别为79.34%和0.45%。同时采用GPC、FTIR和DSC对级分的摩尔质量、支化度和结晶性能进行了测定和分析,结果表明溶液分级能够将HDPE分成窄摩尔质量分布且具有特定结晶度的级分。在本研究范围内,在同样热历史和降温速率条件下,摩尔质量从高到低、支化度由大小的级分非等温结晶能力依次增强,形成晶体的有序度逐渐增大。较低摩尔质量且支化度小的窄摩尔质量分布级分具有较完善、分布更加均匀的薄片晶结构。  相似文献   

8.
直接缩聚法合成聚乳酸的工艺改进   总被引:11,自引:0,他引:11  
以D,L-乳酸为原料,采用优选催化剂、分步除水、连续通氮气、高真空缩合等工艺,直接缩聚合成了可完全生物降解的材料聚乳酸(PLA)。研究了催化剂的种类和用量、聚合温度、聚合时间、体系真空度、聚合工艺等对聚乳酸摩尔质量的影响。最佳条件为辛酸亚锡催化剂0.5份,聚合温度175℃,聚合时间12h,真空度30Pa。改进工艺后合成的聚乳酸无氧化、变色现象,产物的粘均摩尔质量(Mη)达到20800g/mol。  相似文献   

9.
在均聚聚丙烯(PPH)、无规共聚聚丙烯(PPR)和嵌段共聚聚丙烯(PPB)中分别加入刚性成核剂,研究其对聚丙烯(PP)结构与性能的影响。利用电子万能试验机、差示扫描量热仪(DSC)、傅立叶红外光谱仪(FT-IR)和偏光显微镜(POM)等表征手段对改性PP的力学性能、微观结构和结晶性能进行了研究。结果表明,刚性成核剂有细化球晶和加快结晶速率的作用;同时能有效提高PP的弯曲模量、冲击强度、热变形温度;添加0.2份刚性成核剂的PPH和PPB以及添加0.3份刚性成核剂PPR的综合性能最佳。  相似文献   

10.
采用熔融接枝法制备了马来酸酐和苯乙烯多单体熔融接枝无规共聚聚丙烯(MPP),动态流变测试表明无规共聚聚丙烯(PPR)在接枝过程中生成了长支链。以差示扫描量热法(DSC)和Avrami方程分析了PPR及MPP的等温结晶行为,考察了马来酸酐的相对接枝率对MPP等温结晶动力学的影响。结果表明,MPP的结晶速率明显大于PPR,MPP接枝率越高,结晶速率越大。PPR和MPP在较高温度下等温结晶时结晶过程受成核控制,长支链的存在可以促进MPP晶核的形成,从而加快结晶速率。偏光显微镜测试结果显示长链支化结构起到促进异相成核和细化晶粒的作用,随着接枝率的增大,MPP晶粒尺寸越小。  相似文献   

11.
通过核磁共振(13CNMR),红外光谱(IR)和差示扫描量热法(DSC)等表征分析手段对无规共聚聚丙烯(PPR)的物理结构与机械性能进行研究。结果表明:PPR具有典型的无规共聚物的结构,乙烯基团较均匀的无规分散于丙烯分子长链中;在分子序列结构中,EE和EEE联排的结构并不多;乙烯含量低的EP接点的含量偏低,相应的抗冲击强度偏低,乙烯含量高的EP接点的含量偏高,相应的抗冲击强度较高。乙烯在丙烯分子长链中的无规插入也适当的降低了共聚物的熔点。  相似文献   

12.
通过差示扫描量热分析、X射线衍射分析以及力学性能测试等方法,研究了不同乙烯含量的无规共聚聚丙烯(PPR)体系中,在添加定量β成核剂的条件下,乙烯含量对PPR结晶行为及热学、力学性能的影响。结果表明,PPR的熔点和结晶温度都随其乙烯含量的减少而升高;乙烯含量较少的体系,有利于β晶的形成;体系中β晶含量的提高,会使样品热变形温度提高,且冲击性能显著增强;乙烯含量的提高,增大了PPR β结晶的调控难度;实验室自制β成核剂,可使乙烯含量为0.25 %~5.1 %(质量分数,下同)的PPR中的β晶含量达到80 %以上。  相似文献   

13.
Polypropylene random copolymer (PPR) is one of important polypropylene types for the application fields needing for excellent toughness. Because of the random copolymer chain configuration, the polymorphic behavior of PPR is difficult to be altered even by adding β-nucleating agent (β-NA). In this study, a promising method was developed by adding isotactic polypropylene (iPP) into PPR/β-NA blend, which has leaded to a surprising enhancement in the β-crystallization capability of PPR. At the optimal component condition, the β-crystal content of PPR can reach the highest level of 92 % and the β-crystallization capability is improved by 56%. As a result of high β-crystal contents, a superior mechanical toughness has been attained. On the other hand, the fractional crystallization experiment suggests that the stereoregular chains of iPP could assist the formation of primary β-nuclei at the very early stage of crystallization. This special crystallization event dominates the final polymorphic composition in PPR. Furthermore, it is demonstrated that impact polypropylene copolymer (IPC) can be used to substitute iPP for the improvement of β-crystal content of PPR. This provides a huge possibility to improve the low temperature properties of PPR to enlarge its applications.  相似文献   

14.
In this study, polypropylene random copolymer (PPR) composites were prepared by the addition of either three kinds of thermoplastic rubber (TPR) modifiers (types 2088A, 2095, and 2096) or an ethylene–octene copolymer (POE)/high‐density polyethylene (HDPE; 2 :1 w/w) blend. Differential scanning calorimetry, wide‐angle X‐ray diffraction, and dynamic mechanical analysis were used to characterize the crystallization behaviors and dynamic mechanical properties of the PPR composites. The results indicated that PPR/POE/HDPE and PPR/TPR2088A had better comprehensive mechanical properties, especially the low‐temperature toughness among all of the samples. The obtained PPR/POE/HDPE blends showed a high toughness and good stiffness in the temperature interval from ?10 to 23°C with the addition of only 10 wt % POE/HDPE. When the temperature continued to fall below ?10°C, the PPR/TPR2088A composites exhibited a better impact toughness without a loss of too much stiffness. The good low‐temperature toughness of those two composites was attributed to both the decrease in the crystallinity and the uniform dispersion, obvious interfacial adhesion, and cavitation ability of POE/HDPE and TPR2088A in the PPR matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42960.  相似文献   

15.
In this work, the synergistic effects of β‐modification and impact polypropylene copolymer (IPC) on brittle–ductile (B–D) transition behavior of polypropylene random copolymer (PPR) have been investigated. It is interesting to find that adding both IPC and β‐nucleating agent into PPR has three effects: (i) leading to a significant enhancement in β‐crystallization capability of PPR, (ii) contributing to the shift of B–D transition to lower temperatures, (iii) increasing the B–D transition rate. The reason for these changes can be interpreted from the following two aspects. On one hand, the transition of crystalline structure from α‐form to β‐form reduces the plastic resistance of PPR matrix, thus causing the initiation of matrix shear yielding much easier during the impact process. On the other hand, the well dispersed rubbery phase in IPC with high molecular mobility at relatively low temperatures is beneficial to the shear yielding of PPR matrix and, subsequently, the great improvement in impact toughness of the ternary blends. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
刘一鸣  胡贵  吴智华 《塑料科技》2012,40(12):84-88
研究了4种抗氧剂对无规共聚聚丙烯(PPR)紫外光加速老化条件下耐老化性能的影响。结果表明:PPR在紫外光加速老化条件下,大分子链会发生断裂,产生大量羰基;在紫外加速老化初期,由于分子链断裂,分子链运动和重排更容易,材料结晶度明显提高,致使材料拉伸强度在紫外老化初期出现一定程度的增加;随着紫外光辐照时间的延长,材料断裂伸长率逐渐下降;4种抗氧剂中,0.4%亚磷酸酯类改善PPR抗紫外光老化性能的效果最佳。  相似文献   

17.
Lu Sun  Lei Zhu  Benjamin S. Hsiao 《Polymer》2004,45(24):8181-8193
The self-assembly and crystallization behavior of a well-defined low molecular weight polyethylene-block-poly(ethylene oxide) (PE-b-PEO) diblock copolymer was studied. The number-average degrees of polymerization for the PE and PEO blocks were 29 and 20, respectively. The molecular weight distribution was 1.04 as determined by size-exclusion chromatography. The PE-b-PEO sample exhibited two melting points at 28.7 and 97.4 °C for the PEO and the PE crystals, respectively. The crystallization of the PE blocks was unconfined, while the crystallization of the PEO blocks was confined between pre-existing PE crystalline lamellae, as demonstrated by simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) studies. In the fully crystalline state, both PE and PEO blocks formed extended-chain crystals with PE chains tilted ∼22° from the lamellar normal and PEO chains parallel to the lamellar normal, as evidenced by two-dimensional WAXD study of shear-oriented samples. Regardless of hydrogen bonding among hydroxyl chain ends in the PEO blocks, interdigitated, single-crystalline layer morphology was observed for both PE and PEO crystals. The partial crystalline morphology, where the PE crystallizes and the PEO is amorphous, had the same overall d-spacing as the fully crystalline morphology. A double-amorphous PEO layer sandwiched between neighboring PE crystalline layers was deduced based on a chain conformation study using Fourier transform infrared. The confined crystallization kinetics for PEO blocks was investigated by differential scanning calorimetry, which could be explained by a heterogeneous nucleation mechanism. The slower crystallization rate in the PEO-block than the same molecular weight homopolymer was attributed to the effects of nanoconfinement and PEO chains tethered to the PE crystals.  相似文献   

18.
BACKGROUND: How to promote the formation of the γ‐form in a certain propylene‐ethylene copolymer (PPR) under atmospheric conditions is significant for theoretical considerations and practical applications. Taking the epitaxial relationship between the α‐form and γ‐form into account, it is expected that incorporation of some extrinsic α‐crystals, developed by propylene homopolymer (PPH), can enhance the crystallization of the γ‐form of the PPR component in PPR/PPH blends. RESULTS: The PPH component in the blends first crystallizes from the melt, and its melting point and crystal growth rate decrease with increasing PPR fraction. On the other hand, first‐formed α‐crystals of the PPH component can induce the lateral growth of PPR chains on themselves, indicated by sheaf‐like crystal morphology and positive birefringence, which is in turn responsible for enhanced crystallization of the γ‐form of the PPR component. CONCLUSION: Crystalline/crystalline PPH/PPR blends are miscible and the crystallization of the γ‐form of the PPR component is largely enhanced due to the heterogeneous nucleation from the α‐crystals first developed by the PPH component. Our findings could provide an effective way in practice to obtain isotactic polypropylene copolymers rich in γ‐form. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
V.M. Litvinov  M. Soliman 《Polymer》2005,46(9):3077-3089
One of the important applications of random poly(ethylene propylene) copolymer (PPR) is the production of hot water pipes. The pipes can be used under hydrostatic pressure as well as at elevated temperatures up to 70 °C continuously for 50 years and at short time at 80 °C. If a pipe is used at higher temperatures for longer times it could fail earlier. Knowledge of usage time and temperature is vital for determining the origin of a failure of PPR pipes. Several techniques are used for determining changes in chemical and physical structures upon long-time annealing of PPR pipes at different temperatures. Techniques, which are sensitive to thermo-oxidative degradation of PPR and consumption of stabilizers, are not very sensitive for determining storage time longer than one year. The molar mass of PPR does not change upon long-time annealing. It is shown that crystallinity of the samples, as determined by wide angle X-ray diffraction (WAXD), is not largely affected by storage time at elevated temperatures. It is also shown that onset of melting, as measured by differential scanning calorimetry (DSC), increases with increasing storage temperature, which is apparently caused by the perfection of crystalline structure at higher temperatures. Onset of melting allows determining the maximum storage temperature of PPR pipes. It is shown that proton solid-state NMR transverse magnetization (T2) relaxation analysis is the most sensitive tool for determining changes in PPR samples that are caused by storage time of PPR pipes under hydrostatic pressure. The method provides information on molecular mobility and phase composition of PPR samples. Four different phases are analysed with this method: (1) crystalline phase and rigid fraction of the amorphous phase, (2) semi-rigid crystal-amorphous interface, (3) soft fraction of the amorphous phase and (4) rubbery-like material. The most pronounced changes upon long storage time are observed for the rigid fraction of PPR (fraction 1). This suggests that long time annealing of the samples at temperatures far above Tg (about 0 °C) results in (1) perfection of existing crystals and the formation of new crystals, which act as physical junctions leading to immobilization of the amorphous phase, (2) chain elongation in the amorphous phase due to creep under hydrostatic pressure, and (3) an increase in the gradient of concentration of ethylene-rich chain fragments through the mobile fractions of the amorphous phase. All these changes cause embrittlement of the samples. Thus, the combination of DSC and solid-state NMR measurements is a powerful tool for determining the critical time and temperature conditions causing breakage of PPR pipes and fittings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号