首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Transport from the TGN to the basolateral surface involves a rab/N-ethylmaleimide-sensitive fusion protein (NSF)/soluble NSF attachment protein (SNAP)/SNAP receptor (SNARE) mechanism. Apical transport instead is thought to be mediated by detergent-insoluble sphingolipid-cholesterol rafts. By reducing the cholesterol level of living cells by 60-70% with lovastatin and methyl-beta-cyclodextrin, we show that the TGN-to-surface transport of the apical marker protein influenza virus hemagglutinin was slowed down, whereas the transport of the basolateral marker vesicular stomatitis virus glycoprotein as well as the ER-to-Golgi transport of both membrane proteins was not affected. Reduction of transport of hemagglutinin was accompanied by increased solubility in the detergent Triton X-100 and by significant missorting of hemagglutinin to the basolateral membrane. In addition, depletion of cellular cholesterol by lovastatin and methyl-beta-cyclodextrin led to missorting of the apical secretory glycoprotein gp-80, suggesting that gp-80 uses a raft-dependent mechanism for apical sorting. Our data provide for the first time direct evidence for the functional significance of cholesterol in the sorting of apical membrane proteins as well as of apically secreted glycoproteins.  相似文献   

2.
FEN-1 proteins are a family of nucleases essential for lagging strand DNA synthesis. A gene with sequence similarity to FEN-1 protein-encoding genes, rad2 +, has been identified in Schizosaccharomyces pombe . We report the overexpression, purification, and character-ization of the putative S.pombe FEN-1 homolog, Rad2p. A GST-Rad2p fusion protein was over-expressed in Saccharomyces cerevisiae and purified to near homogeneity by GST affinity chromatography. Although Rad2p had been previously classified as a putative FEN-1 protein based on amino acid homology, there has been no biochemical evidence demonstrating flap endonuclease activity. DNA cleavage analysis of several different oligodeoxynucleotide structuresindicates that GST-Rad2p possesses both 5'-flap endonuclease and 5'-->3' double-stranded DNA exo-nuclease activities. GST-Rad2p incises a 5'-flap and a 5'-pseudo-Y structure one base 3' of the branch point in the duplex region and also degrades double-stranded DNA. This is the first report on the biochemical characterization of S.pombe Rad2p. The potential roles of Rad2p in DNA excision repair and other nucleic acid reactions are discussed.  相似文献   

3.
About 15% of the conjugating cells of Schizosaccharomyces pombe were observed to lyse spontaneously during the conjugation process. Lysis occurred at the site of union.  相似文献   

4.
The enzyme CDP-diacylglycerol:sn-glycerol-3-phosphate 3-phosphatidyltransferase (phosphatidylglycerolphosphate synthase; PGPS4; EC 2.7.8.5) is located in the mitochondrial inner membrane and catalyzes the committed step in the cardiolipin branch of phospholipid synthesis. Previous studies revealed that PGPS is the most highly regulated enzyme in cardiolipin biosynthesis in both Saccharomyces cerevisiae and Schizosaccharomyces pombe. In this work, we report the purification to homogeneity of PGPS from S. pombe. The enzyme was solubilized from the mitochondrial membrane of S. pombe with Triton X-100. The solubilized enzyme, together with the associated detergent and intrinsic lipids, had a molecular mass of 120 kDa, as determined by gel filtration. The enzyme was further purified using salt-induced phase separation, gel filtration, and ionic exchange, hydroxylapatite, and affinity chromatographies. The procedure yielded a homogeneous protein preparation, evidenced by both SDS-polyacrylamide gel electrophoresis (PAGE) and agarose isoelectric focusing under nondenaturing conditions. The purified enzyme had an apparent molecular mass of 60 kDa as determined by SDS-PAGE. The enzyme showed a strong dependence on lipid cofactors for activity in vitro. While both phosphatidic acid and CDP-diacylglycerol appeared to be activators, the most significant activation was observed with cardiolipin. The possible physiological significance of the lipid cofactor effect is discussed. This is the first purification of a eucaryotic PGPS enzyme to date, and the first purification of a phospholipid biosynthetic enzyme from S. pombe.  相似文献   

5.
The Schizosaccharomyces pombe mei3(+) gene is expressed only in diploid cells undergoing meiosis. Ectopic expression of mei3(+) in haploid cells causes meiotic catastrophe. Mei3 is an inhibitor of Ran1/Pat1 kinase and contains a nine-amino-acid motif, Mei3-RKDIII, that resembles two regions in the Ste11 substrate for Ran1/Pat1. Substitution of serine for Arg-81 within Mei3-RKDIII transforms the inhibitor into a substrate for Ran1/Pat1. Thus, it is likely that Mei3-RKDIII defines a pseudosubstrate sequence. In this study, we constructed a series of mei3 deletion mutations and assayed each for activity. This analysis indicates that the carboxy-terminal domain of Mei3 is sufficient for function in vivo. Alanine-scanning mutagenesis identifies critical residues within the inhibitory domain. Two mutations, SM1 and SM8, fail to cause meiotic catastrophe. The SM1 mutation contains alterations of amino acid residues in Mei3-RKDIII. Recombinant SM1 protein exhibits reduced ability to inhibit Ran1/Pat1 kinase in vitro and interacts inefficiently with the kinase in a two-hybrid assay. The SM8 protein binds to Ran1/Pat1 in a two-hybrid assay but fails to inhibit Ran1/Pat1 substrate phosphorylation in vitro. These findings provide evidence that Mei3-RKDIII defines a Ran1/Pat1-binding site that is necessary but not sufficient for inhibition of the kinase. Using fusions to green fluorescent protein, the cellular localization of Ran1 and Mei3 was examined in living cells. Ran1 is concentrated in the nucleus. Mei3 is also enriched in the nucleus and, consistent with the genetic and biochemical results, the inhibitory domain of Mei3 is sufficient for nuclear localization.  相似文献   

6.
The mutY homolog (SpMYH) gene from a cDNA library of Schizosaccharomyces pombe encodes a protein of 461 amino acids that displays 28 and 31% identity to Escherichia coli MutY and human MutY homolog (MYH), respectively. Expressed SpMYH is able to complement an E. coli mutY mutant to reduce the mutation rate. Similar to E. coli MutY protein, purified recombinant SpMYH expressed in E. coli has adenine DNA glycosylase and apurinic/apyrimidinic lyase activities on A/G- and A/7,8-dihydro-8-oxoguanine (8-oxoG)-containing DNA. However, both enzymes have different salt requirements and slightly different substrate specificities. SpMYH has greater glycosylase activity on 2-aminopurine/G and A/2-aminopurine but weaker activity on A/C than E. coli MutY. Both enzymes also have different substrate binding affinity and catalytic parameters. Although SpMYH has great affinity to A/8-oxoG-containing DNA as MutY, the binding affinity to A/G-containing DNA is substantially lower for SpMYH than MutY. SpMYH has similar reactivity to both A/G- and A/8-oxoG-containing DNA; however, MutY cleaves A/G-containing DNA about 3-fold more efficiently than it does A/8-oxoG-containing DNA. Thus, SpMYH is the functional eukaryotic MutY homolog responsible for reduction of 8-oxoG mutational effect.  相似文献   

7.
8.
The glucose-6-phosphate dehydrogenase (G6PD) gene is X-linked. There are numerous mutations that cause a deficiency of this enzyme in erythrocytes. G6PD deficiency can produce anemia, both when drugs are administered and under the stress induced by infection. Functionally severe variants cause hereditary non-spherocytic hemolytic anemia, i.e. anemia even in the absence of stress. Neonatal jaundice occurs in G6PD deficiency, but it is likely that it is largely due to impairment of liver function, rather than to hemolysis. It has been suggested that there are clinical manifestations of G6PD deficiency that are related to other tissues, but the existence of these is not well documented. Some mutations that produce G6PD deficiency in red cells exist at polymorphic frequencies. Individuals with such mutations seem to have enjoyed a selective advantage because of resistance to falciparum malaria. Different mutations, each characteristic of certain populations, are found, and have been characterized at the deoxyribonucleic acid (DNA) level. G6PD A-(202A376G) is the most common African mutation. G6PD Mediterranean(563T) is found in Southern Europe, the Middle East and in the Indian subcontinent. Several other mutations are common in Asia. Genetic variability of G6PD has played an important role in the understanding of a variety of developmental processes.  相似文献   

9.
A restriction map of the entire Schizosaccharomyces pombe genome was constructed using two restriction enzymes (BamHI and PstI) that recognize 6 bp. The restriction map contains 420 minimally overlapping clones (miniset) and has 22 gaps. We located 126 genes, marker fragments of DNA (NotI and SfiI linking clones), and 36 transposable elements by hybridization to unique restriction fragments.  相似文献   

10.
The large N-linked oligosaccharides released by endo-beta-N-acetylglucosaminidase H from Schizosaccharomyces pombe glycoproteins were analyzed for the presence of noncarbohydrate functional groups. No phosphate, sulfate, or acetate could be detected; however, approximately six molecules of pyruvic acid/molecule were found on 98% of the oligosaccharides. Pyruvate moieties were acetal (ketal)-linked to galactose residues in the R configuration to carbons 4 and 6. This is the first report of pyruvate functional groups being attached to N-linked oligosaccharides in yeast and appears only to be the second documentation of this sugar modification in eukaryotes.  相似文献   

11.
Among the glutamate-requiring strains of Schizosaccharomyces pombe previously described [1], glu2 and glu3 strains were both shown to lack NAD-specific isocitrate dehydrogenase. glu4 strains were shown to lack glutamine:2-oxoglutarate aminotransferase (GOGAT), and to be defective in ammonia assimilation. The regulation of GOGAT activity in wild-type cells was investigated and was consistent with GOGAT and glutamine synthetase being involved in ammonium assimilation, particularly under conditions of nitrogen limitation.  相似文献   

12.
Available evidence indicates that transforming growth factor beta (TGFbeta) is produced by bone cells, that production is enhanced by testosterone and dihydrotestosterone, and that TGFbeta is an important modulator of bone formation, induction, and repair. To determine the relative concentrations of isoforms of skeletal TGFbeta, whether orchiectomy alters the concentration of TGFbeta in long bones, and whether alteration is prevented by testosterone replacement, male Sprague-Dawley rats were either sham-operated and given placebo (n = 20) or orchiectomized and given either placebo (n = 20) or 100 mg testosterone (n = 20) by slow-release pellets implanted sc at the back of the neck and killed at 6 weeks. Orchiectomy did not change serum calcium and lowered serum testosterone and serum phosphorus; these reductions were prevented by testosterone replacement. TGFbeta1 in skeletal extracts was much more abundant than TGFbeta2 or TGFbeta3. Orchiectomy reduced skeletal TGFbeta by over 80 percent, and reduction was prevented by testosterone replacement. The relative abundance of the three isoforms of TGFbeta in bone was not influenced by orchiectomy or testosterone replacement, and skeletal messenger RNA of TGFbeta1 and TGFbeta2 was not altered 4 weeks after orchiectomy. Messenger RNA for TGFbeta3 was below the limits of detection. Thus, testosterone deficiency markedly diminishes skeletal TGFbeta, and reduction is prevented by testosterone replacement. The findings support the hypothesis that testosterone and TGFbeta are required for maintenance of the skeleton in male rats.  相似文献   

13.
Wee1 tyrosine kinase regulates mitosis by carrying out the inhibitory tyrosine 15 phosphorylation of Cdc2 M-phase inducing kinase. Schizosaccharomyces pombe Wee1 is a large protein, consisting of a C-terminal catalytic domain of approximately 350 amino acids preceded by a N-terminal domain of approximately 550 residues. The functional properties of the Wee1 N-terminal domain were investigated by expressing truncated forms of Wee1 in S. pombe. Both positive and negative regulatory domains were identified. Sequences important for Wee1 function were mapped to a central region (residues 363-408). This region is not required for kinase activity or nuclear localization, suggesting it may be involved in substrate recognition. The negative regulatory domain resides in the N-terminal third of Wee1, Wee1 constructs lacking this domain are more effective at delaying mitosis than wild-type Wee1. The negative regulatory domain contains clusters of potential Cdc2 phosphorylation sites. Investigations to monitor the abundance of Wee1 mRNA and protein during the cell cycle were also carried out.  相似文献   

14.
1. In resting cells of the fission yeast Schizosaccharomyces pombe, the uptake of calcium is stimulated by the addition of 90 mM glucose in the presence as in the absence of respiration and inhibited by Antimycin A in the absence of exogenous carbon source. This uptake therefore requires fermentative or respiratory metabolic energy. 2. The calcium uptake by S. pombe exhibits saturation kinetics and high affinity for calcium. At external pH 4.5, the apparent Km is 45 muM ca2+ 400 muM of other divalent cations exert competitive inhibitions of calcium uptake in the following order of affinities: Sr2+ greater than Mn2+ greater than Co2+ greater than Mg2+. Inhibition by KCl is also observed but is of non-competitive type and requires high concentrations of the order of 40 mM. 3. At 30 degrees C, the uptake rate of calcium is about 10-times higher at pH 8925 than at pH 4.0. An extrusion of 45Ca2+, the rate of which is estimated to be lower than one-fifth of the uptake, is observed in the presence of glucose when the external pH is acid. 4. At external pH 4.5, low concentrations of lanthanum chloride, ruthenium red and hexamine cobaltichloride are inhibitory for the uptake of calcium by the yeast cells. 5. In presence of Antimycin A, the uncouplers: NaN3, dinitrophenol, and concentrations of crobonylcyanide m-chlorophenylhydrazone higher than 80 muM inhibit the calcium uptake by glycolysing cells. In the presence of glucose, the K+ ionophore Dio-9 dnhances severalfold the uptake of calcium even at 2 degrees C. 6. It is concluded that S. pombe possess an active transport system for low concentrations of calcium. This transport seems to be dependent on an electric potential (negative inside) across the cellular membrane.  相似文献   

15.
A conditional lethal and radiation-sensitive mutant of Schizosaccharomyces pombe is described in which both characteristics result from a single gene mutation. Confirmation of the pleiotropic nature of this mutant was obtained by tetrad analysis and by testing the radiation sensitivity of a large number of revertants that grew normally at the restrictive temperature. The colony-forming ability of the mutant after ultraviolet radiation, gamma radiation, and ethyl methane sulfonate treatment is considerably altered by the post-treatment incubation temperature, showing higher survival at 25 than at 30degreesC. The radiosensitivity of the mutant is also influenced by the stage of growth. The difference in radiation sensitivity between the wild type and mutant is greater when log-phase cultures are compared. The characteristics of this mutant suggest that it is defective in a step common to both deoxyribonucleic acid replication and repair.  相似文献   

16.
Complementary DNAs involved in potassium transport in Schizosaccharomyces pombe were selected by complementation of defective K+ uptake in a trk1 trk2 mutant of Saccharomyces cerevisiae. Here we describe the SpTRK gene that encodes a protein of 833 amino acids. The predicted structure contains 12 putative membrane-spanning domains and resembles various high- and low-affinity systems for K+ transport in yeasts and plants. TKHp, the product of SpTRK exhibits high homology to TRK1 and TRK2 of Saccharomyces cerevisiae as well as to HKT1 of Triticum aestivum, but is not related to HAK1 of another ascomycete, Schwanniomyces occidentalis, suggesting that different routes for potassium uptake evolved independently. This protein is a potassium-specific transporter since functional analysis of the SpTRK complemented mutant strain of Sacch. cerevisiae revealed potassium transport affinities and uptake characteristics similar to those obtained in wild-type Sch. pombe. Patch-clamp analysis in the whole-cell mode confirmed the TKHp-mediated inward current in the complemented strain. The inward current increased by acidification of the extracellular medium thereby suggesting a mechanism of K+H+ cotransport. The inward current is not detectable when external K+ is substituted by Na+, documenting a distinct cation specificity of the protein.  相似文献   

17.
Cells of the fission yeast Schizosaccharomyces pombe were permeabilized by treatment with toluene-ethanol. The permeabilized cells lost the bulk of the internal trehalose pool while most of the alkaline phosphatase, invertase, alpha-glucosidase, or neutral trehalase activities located inside the cells remained unaffected. This system was used as an in situ assay to determine the involvement of trehalose in enzyme protection during thermal treatments. The addition of trehalose to suspensions of permeabilized cells resulted in a sugar-dependent thermoprotection of the internal marker enzymes. This approach demonstrates that in whole cells of the fission yeast trehalose plays a physiological role as a protective molecule against thermal denaturation of cellular enzymes.  相似文献   

18.
The centromere enhancer is a functionally important DNA region within the Schizosaccharomyces pombe centromeric K-type repeat. We have previously shown that addition of the enhancer and cen2 centromeric central core to a circular minichromosome is sufficient to impart appreciable centromere function. A more detailed analysis of the enhancer shows that it is dispensable for centromere function in a cen1-derived minichromosome containing the central core and the remainder of the K-type repeat, indicating that the critical centromeric K-type repeat, like the central core, is characterized by functional redundancy. The centromeric enhancer is required, however, for a central core-carrying minichromosome to exhibit immediate centromere activity when the circular DNA is introduced via transformation into S. pombe. This immediate activation is probably a consequence of a centromere-targeted epigenetic system that governs the chromatin architecture of the region. Moreover, our studies show that two entirely different DNA sequences, consisting of elements derived from two native centromeres, can display centromere function. An S. pombe CENP-B-like protein, Abp1p/Cbp1p, which is required for proper chromosome segregation in vivo, binds in vitro to sites within and adjacent to the modular centromere enhancer, as well as within the centromeric central cores. These results provide direct evidence in fission yeast of a model, similar to one proposed for mammalian systems, whereby no specific sequence is necessary for centromere function but certain classes of sequences are competent to build the appropriate chromatin foundation upon which the centromere/kinetochore can be formed and activated.  相似文献   

19.
The assignment of the known ade genes to steps in purine biosynthesis in Schizosaccharomyces pombe has been completed with the demonstration that an ade3 mutants lacks FGAR amidotransferase, ade1A mutants lack GAR synthetase and ade1B mutants lack AIR synthetase. A comparison of enzyme activity with map position for ade1 mutants shows that (1) complementing ade1A mutants lack GAR synthetase but posses wild type amounts of AIR synthetase, (2) complementing ade1B mutants lack AIR synthetase but posses variable amounts of GAR synthetase, (3) non-complementing mutants lack both activities. In wild type strains the two activities fractionate together throughout a hundred-fold purification. Hence the ade1 gene appears to code for a bifunctional enzyme catalysing two distinct steps in purine biosynthesis. The two activities are catalysed by two different regions of the polypeptide chain which can be altered independently by mutation. Gel filtration studies on partially purified enzymes from wild type and various complementing mutant strains, indicate that the bifunctional enzyme is a multimer consisting of between four and six sub-units of 40,000 daltons each. GAR synthetase activity is associated with both the monomeric and multimeric forms but AIR synthetase is only associated with the multimer. A comparison of enzyme levels between diploids and their original complementing haploid strains suggests that complementation is due to hybrid enzyme formation.  相似文献   

20.
A wild-type strain, Sp972 h-, of Schizosaccharomyces pombe was mutagenized with ethylmethanesulfonate (EMS), and 2-deoxyglucose (2-DOG)-resistant mutants were isolated. Out of 300 independent 2-DOG-resistant mutants, 2 failed to grow on glucose and fructose (mutants 3/8 and 3/23); however, their hexokinase activity was normal. They have been characterized as defective in their sugar transport properties, and the mutations have been designated as std1-8 and std1-23 (sugar transport defective). The mutations are allelic and segregate as part of a single gene when the mutants carrying them are crossed to a wild-type strain. We confirmed the transport deficiency of these mutants by [14C]glucose uptake. They also fail to grow on other monosaccharides, such as fructose, mannose, and xylulose, as well as disaccharides, such as sucrose and maltose, unlike the wild-type strain. Lack of growth of the glucose transport-deficient mutants on maltose revealed the extracellular breakdown of maltose in S. pombe, unlike in Saccharomyces cerevisiae. Both of the mutants are unable to grow on low concentrations of glucose (10 to 20 mM), while one of them, 3/23, grows on high concentrations (50 to 100 mM) as if altered in its affinity for glucose. This mutant (3/23) shows a lag period of 12 to 18 h when grown on high concentrations of glucose. The lag disappears when the culture is transferred from the log phase of its growth on high concentrations. These mutants complement phenotypically similar sugar transport mutants (YGS4 and YGS5) reported earlier by Milbradt and Hoefer (Microbiology 140:2617-2623, 1994), and the clone complementing YGS4 and YGS5 was identified as the only glucose transporter in fission yeast having 12 transmembrane domains. These mutants also demonstrate two other defects: lack of induction and repression of shunt pathway enzymes and defective mating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号